
Positive Unlabeled Gradient Boosting
Caitlin Timmons∗

Department of Statistical and Data Sciences
Smith College

Northampton, MA, USA
ctimmons@smith.edu

Walter Gerych
Department of Data Science

Worcester Polytechnic Institute
Worcester, MA, USA

wgerych@wpi.edu

Andrea Boskovic∗
Department of Mathematics and Statistics

Amherst College
Amherst, MA, USA

aboskovic21@amherst.edu

Luke Buquicchio
Department of Data Science

Worcester Polytechnic Institute
Worcester, MA, USA
ljbuquicchio@wpi.edu

Sreeharsha Lakamsani∗
Department of Computer Science

Arizona State University
Tempe, AZ, USA

hlakamsani@asu.edu

Elke Rundensteiner
Department of Data Science

Worcester Polytechnic Institute
Worcester, MA, USA

rundenst@wpi.edu

Abstract—Classification applied to medical datasets from diag-
nosis or survey application data often must address the challenge
that such data is weakly labeled, with only some positive labels
and the rest of the data instances mostly being unlabeled. Stan-
dard classifiers struggle to learn the correct class for these positive
but unlabeled instances, particularly within imbalanced datasets.
The standard Gradient Boosting Classifier is one algorithm that
works well on balanced data with completely labeled examples
but performs poorly otherwise. In order to improve upon this
state-of-the-art method, we propose a modification to its loss
function that empowers it to learn a decision boundary more
reflective of the data’s true distribution. We call this the novel
gradient boosting classifier. Our experimental study demonstrates
that our proposed new classifier outperforms the state-of-the-art
by 8.3% on average across several public medical data sets. This
classifier can be applied to healthcare settings, where imbalanced
and positive unlabeled data sets are common.

Index Terms—gradient boosting, machine learning, neural
network, positive unlabeled

I. INTRODUCTION

In health fields, it is especially crucial that we develop
highly accurate machine learning algorithms, as they may
determine whether or not a patient receives appropriate treat-
ment. However, some health-related data, particularly surveys
or diagnoses, can be described as positive unlabeled: datasets
in which the only labeled instances are positive [7]. The
remaining examples are unlabeled, but may actually belong to
either class. Positive unlabeled health data may occur for mul-
tiple reasons, such as stigma around reporting mental health
symptoms, incorrect patient reports, infrequent medical visits,
or errors in data labeling. This data type makes classification
tasks much more difficult [15]. Standard classifiers typically
expect completely labeled training sets in order to make
predictions, which forces the assumption that all unlabeled
examples belong to the negative class and typically results in

*Work on this project was done while the authors worked remotely through
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an erroneous decision boundary, as described in Figure 1.

A. Problem Statement

Standard machine learning techniques are ill-suited for
learning from positive unlabeled data. In positive unlabeled
datasets, only a subset of the positive class is labeled, often
assumed to be a representative sample of the entire positive
distribution from which the data are drawn [1]. The remaining
data from both classes are unlabeled. Relatively few learning
techniques explicitly designed for positive unlabeled data exist.
Of those techniques, most perform poorly on small datasets.
However, in health fields, where positive unlabeled data are
more common, datasets are often small due to the difficulty
of collecting data or accessing patients.

B. State-of-the-Art

One popular machine learning classifier is the standard
Gradient Boosting Classifier [4]. Gradient boosting has gained
popularity due to its success with many classification prob-
lems. Its ensembling method creates a model based on a
combination of weak learners in a successive manner, and it
achieves optimal results through loss minimization. Gradient
Boost can work well for small datasets, though is usually
ill-suited for positive unlabeled data, as it incorporates loss
and residual minimization steps requiring data from both
classes [1]. Other approaches to positive unlabeled learning
include method modification, where existing techniques are
modified for positive unlabeled data, and preprocessing tech-
niques like deep learning and Support Vector Machines [3],
[6], [8]. However, these methods typically require large
datasets, which are not always readily available, in order to
perform well.

C. Limitations of State-of-the-Art

The main shortcoming of the Gradient Boosting Classifier
and other standard machine learning techniques is that they
expect completely, and correctly, labeled data as input. Us-
ing these techniques on positive unlabeled data forces the978-1-7281-7571-3/20/$31.00 ©2020 IEEE



Fig. 1: Unlike standard classifiers, the novel gradient boosting
classifier creates a new decision boundary to capture positive
unlabeled instances in data.

assumption that all unlabeled data simply must belong to the
negative class, which is not always true. Method modification
techniques, while more sophisticated, also require that at least
some unlabeled data are designated as negative—either at
random or using prior knowledge of the dataset. Preprocessing
approaches like deep learning do not always require negative
examples, but often work poorly on small datasets. Small data
is common in health areas, as patients may be scarce or data
difficult or expensive to collect. All of these techniques share a
common pitfall, they are not attuned to severe class imbalance
and struggle to make accurate predictions for these datasets.

D. Proposed Solution

In order to more accurately classify positive unlabeled
examples, especially in small, imbalanced datasets, we present
a novel gradient boosting classifier designed to handle positive
unlabeled data. We modify the loss minimization steps in
the gradient boosting algorithm, such that they requires only
positive and unlabeled examples. This eliminates the need for a
negative data class, thereby modifying the classifier’s decision
boundary to correctly capture positive unlabeled examples, as
shown in Figure 1.

II. BACKGROUND

A. Gradient Boosting and Class Imbalance

The gradient boosting technique ensembles together weak
learners (decision trees) to form an extensible classifier [4].
Gradient boosting can succeed on small datasets, but like most
classifiers, performs poorly on imbalanced datasets. With a
skewed class distribution, it predicts almost exclusively the
majority class. The minority class in health data often repre-
sents an abnormal case, such as an ill patient. As such, the cost
of misclassifying minority instances is high, and imbalanced
classification becomes even more difficult. Both issues’ effects
are compounded in the case of small datasets. Modifications
such as resampling can mitigate class imbalance, although
gradient boosting may be particularly prone to overfitting on
such datasets, as it focuses on individual learners’ errors.

B. Empirical Risk Minimization

One method for handling positive unlabeled data is pre-
processing, which includes empirical risk minimization. Em-
pirical risk is a reflection of model error, and thus an ideal
model minimizes its value. We define empirical risk below in

Fig. 2: Our proposed novel gradient boosting classifier im-
proves upon the shortcomings of other approaches to positive
unlabeled learning, allowing us to work with smaller datasets
and datasets lacking negative examples.

Equation (1). We assume an empirical probability distribution
D based on our dataset, from which we can draw (x, y) pairs,
and a loss function L measuring the difference between our
model’s prediction ŷ and the true value y [12].

R(f,D) = E(x,y)∼D[L(f(x), y)] (1)
For simplicity, we redefine empirical risk as follows:

R(f) = EL(f(x), y).

III. PROPOSED METHOD: GRADIENT BOOSTING
ALGORITHM FOR POSITIVE UNLABELED DATA

We have developed a novel gradient boosting algorithm
designed to perform classification tasks on positive and un-
labeled data. Loss minimization is an integral step in gradient
boosting, as loss estimates the model’s predictive ability,
yet standard differentiable loss functions require completely
labeled data as inputs. Instead, the novel gradient boosting
algorithm minimizes an empirical risk function that requires
only positive and unlabeled data as inputs.

Empirical risk is the average expectation of the loss over the
entire data distribution. This definition can be decomposed into
the positive expectation of the positive loss multiplied by the
class prior, and the negative expectation of the negative loss,
multiplied by the class prior.

R̂(f) = EL(f(x), y)

= P (y = 1)ED+L
+(f(x)) + P (y = 0)ED−L

−(f(x))

= πED+L
+(f(x)) + (1− π)ED−L

−(f(x))

However, we cannot use this exact definition to calculate
empirical risk for positive unlabeled datasets, which lack la-
beled negative examples. In order to eliminate the need for la-
beled negative examples, we redefine the negative expectation
of the negative loss in terms of the positive expectation of the
negative loss, multiplied by the class prior, and the expectation
of the negative loss over the entire data distribution [11].

EDL
−(f(x)) = πED+L

−(f(x)) + (1− π)ED−L
−(f(x))

⇐⇒
EDL

−(f(x))− πED+L
−(f(x)) = (1− π)ED−L

−(f(x))

Therefore, we may now determine empirical risk by calcu-
lating the positive expectation of the positive loss multiplied
by the class prior, subtracting the positive expectation of the



negative loss multiplied by the class prior, and adding the
expectation of the negative loss over the entire distribution.
This method eliminates the need for labeled negative examples
in the loss minimization step of a gradient boosting algorithm,
making it ideal for work on positive unlabeled datasets.

R̂(f) = EL(f(x), y)

= P (y = 1)ED+L
+(f(x)) + P (y = 0)ED−L

−(f(x))

= πED+L
+(f(x)) + (1− π)ED−L

−(f(x))

= πED+L
+(f(x)) +

(
EDL

−(f(x))− πED+L
−(f(x))

)
= πED+L

+(f(x))− πED+L
−(f(x)) + EDL

−(f(x))

(2)
We implement our novel classifier in PyTorch [10]. The

PU empirical risk function defined in Equation (2) replaces
a standard differentiable function at gradient boost’s loss and
residual minimization steps. We compute its first term as the
binary cross entropy loss over the predictions for positive
examples and positive labels. We calculate its second term as
the binary cross entropy loss over the predictions for positive
examples and the same number of synthetic negative labels.
We use synthetic negatives as we assume the data contains
only positive and unlabeled examples. Lastly, we calculate its
third term as the binary cross entropy loss over the predictions
for all examples and the same number of synthetic negative
labels. We average each function term before taking the sum.

While we specifically incorporate the empirical risk function
for positive unlabeled data (Equation (2)) within a Gradient
Boosting classifier, our approach is flexible enough to be
implemented into multiple algorithms. Though not discussed
in this paper, this method of loss function modification may be
used to equip other classifiers for positive unlabeled learning,
such as XGBoost, SVM, or Stochastic Gradient Descent.

IV. EXPERIMENTAL STUDY EVALUATION

TABLE I: Overview of the datasets used to evaluate the novel
gradient boosting classifier.

Dataset Num. Instances Prop. Pos.
Instances

HBC [2] 306 26%
PID [2] 768 35%

CHD [2] 303 55%
RC: Nasal [7] 7167 5.2%
RC: Cough [7] 7167 3.8%

RC: Stressed [7] 7167 3.9%
RC: Sad [7] 7167 1.7%

RC: Nausea [7] 7167 1.0%
RC: Any [7] 7167 9.7%

A. Novel Gradient Boost on Three Standard Health Data Sets

We first compare the overall performance with respect to
positive unlabeled instances of our novel gradient boosting
classifier (NovelGB) to the state-of-the-art Gradient Boosting
Classifier from scikit-learn (StandardGB) [10] using three
standard health datasets: Haberman Breast Cancer (HBC),
Pima Indians Diabetes (PID), and Cleveland Heart Disease
(CHD) datasets, which are detailed in Table I. These datasets
likely do not contain many positive unlabeled examples, as

TABLE II: At a high proportion of positive unlabeled examples
(75%), the NovelGB outperforms the StandardGB for each
standard health dataset.

Dataset Method % PU
Examples

Balanced
Accuracy Recall

HBC Novel 75% 0.508 0.113
HBC Standard 75% 0.497 0.004
PID Novel 75% 0.570 0.311
PID Standard 75% 0.537 0.117
CHD Novel 75% 0.564 0.520
CHD Standard 75% 0.534 0.004

Fig. 3: The NovelGB predicts the correct class for more
positive unlabeled examples than the StandardGB for the
HBC, PID and CHD datasets. Each result shown represents
an average over 10 experiments.

their target variables are measured rather than self-reported.
We manually increase the proportion of positive unlabeled
examples in each dataset to learn about the impact of such
unlabeling on the methods. We use a 70:30 train test split and
perform 10-fold cross validation at each proportion.

NovelGB outperforms StandardGB on each dataset as the
proportion of positive unlabeled unlabeled instances, exempli-
fied in Table II. It achieves a higher average balanced accuracy
in 13 of 24 experiments, 8 of which occur when more than half
the positive examples in a dataset were unlabeled. NovelGB
obtains a superior recall in every experiment, ranging from
7% to 51% higher than StandardGB. Importantly, the Nov-
elGB predicts the correct label for substantially more positive
unlabeled examples than the StandardGB in every dataset, as
shown in Figure 3.

B. Novel Gradient Boost on Reality Commons Dataset

Reality Commons is unique among the datasets used in
that it likely contains many positive unlabeled examples. Its
target variables—which indicate if an individual experienced
the given flu symptom on that day—are all self-reported.
We compare the NovelGB’s performance against two other
methods: the StandardGB and a positive unlabeled bagging
technique (PU-SVM), [8], which is a method modification



TABLE III: Comparing performance of NovelGB (dark grey),
StandardGB (white) [15], and PU-SVM (light grey) [8] on
Reality Commons. NovelGB achieves the highest overall per-
formance.

Method Target Balanced Accuracy Recall
NovelGB Nasal 0.511 0.279

StandardGB Nasal 0.413 0.313
PU-SVM Nasal 0.497 0.012
NovelGB Cough 0.541 0.230

StandardGB Cough 0.453 0.106
PU-SVM Cough 0.494 0.006
NovelGB Stress 0.532 0.328

StandardGB Stress 0.480 0.759
PU-SVM Stress 0.5 0.017
NovelGB Sad 0.508 0.295

StandardGB Sad 0.483 0.016
PU-SVM Sad 0.506 0.016
NovelGB Nausea 0.648 0.364

StandardGB Nausea 0.486 0
PU-SVM Nausea 0.491 0.017
NovelGB Any 0.544 0.230

StandardGB Any 0.472 0.745
PU-SVM Any 0.497 0.011

approach to PU learning. Like the StandardGB, this method
requires that we treat unlabeled data points as negative. We
implement the PU-SVM as detailed in [13] using SVM as the
base classifier.

We use a 60:40 train test split for all experiments, and apply
SMOTETomek resampling to our training data for all experi-
ments to handle class imbalance. We tune hyperparameters in
each algorithm using grid search.

We find that the NovelGB outperforms the StandardGB for
every target variable, as shown in Table III. It achieves the
highest balanced accuracy in every case, and the highest recall
for half of the targets. Interestingly, the NovelGB achieves
the greatest improvement over the other two methods for the
nausea target, which is the most imbalanced with positive
instances representing 1% of all instances.

C. Preprocessing Techniques for Positive Unlabeled Data on
Reality Commons Dataset

In order to compare the NovelGB to preprocessing tech-
niques for positive unlabeled data, we test a feed-forward
neural network (PU-FFNN) equipped with the PU empirical
risk function defined in Equation (2). Its architecture consists
of three linear layers with hidden dimension size ten, and a
dropout layer with probability 0.3. We use the Adam optimizer.
Batch size and learning rate are kept at 256 and 10−5. Training
epochs vary between 750-1000 depending on the experiment.

We find that the NovelGB outperforms the PU-FFNN on
the three most imbalanced targets. It always obtains a false
positive rate between 21% and 61% lower than the PU-
FFNN, depending on the symptom. A low false positive rate
is desirable in a medical context, as it indicates that fewer
healthy patients are falsely identified as ill.

V. CONCLUSION

Through experimentation on standard health datasets and
the Reality Commons dataset, we demonstrate that our Nov-
elGB outperforms the state-of-the-art on positive unlabeled

data. The StandardGB expects completely labeled data and
thus likely misclassifies many unlabeled positives. The PU-
SVM requires that we assume a subset of unlabeled examples
are negative, which may account for its poor performance. The
PU-FFNN’s relative failure may be attributed to Reality Com-
mons’ smaller size, as deep learning techniques are typically
better suited for very large datasets [14].

We have improved upon a popular classification algorithm,
making it applicable to fields where a dearth of machine
learning methods for such data exist. Potential applications
include the battle against COVID-19, where collected data
would likely be positive and unlabeled due to sick individuals
who go untested. Future directions include also adapting the
XGBoost algorithm for positive unlabeled learning, because
its regularization step may help avoid overfitting tendencies
that could affect Gradient Boost.

VI. ACKNOWLEDGEMENTS

We would like to thank the Worcester Polytechnic Institute
Data Science department, the NSF REU site: Data Science
Research for Healthy Communities in the Digital Age, the
NSF IIS grant #1815866 and the DARPA WASH program
HR001117S0032.

REFERENCES

[1] J. Bekker and J. Davis. 2020. Learning from positive and unlabeled data:
a survey. Machine Learning 109:719-760.

[2] D. Dua and C. Graff. 2019. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[3] C. Elkan and K. Noto. 2008. Learning classifiers from only positive
and unlabeled data. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 213-220.

[4] J. Friedman. 2001. Greedy function approximation: A gradient boosting
machine. Annals of Statistics 29(5):1189-1232.

[5] S. Jain, M. White, and P. Radivojac. 2017. Recovering true clas-
sifier performance in positive-unlabeled learning. arXiv preprint
arXiv:1702.00518.

[6] A. Kaboutari, J. Bagherzadeh, F. Kheradmand. 2014. An Evaluation of
Two-Step Techniques for Positive-Unlabeled Learning in Text Classifi-
cation. International Journal of Computer Applications Technology and
Research 3(9):592-594.

[7] A. Madan, M. Cebrian, S. Moturu, K. Farrahi, A. Pentland. 2012.
Sensing the ’Health State’ of a Community. Pervasive Computing
11(4):36-45.

[8] F. Mordelet and J.P Vert. 2014. A bagging SVM to learn from positive
and unlabeled examples. Pattern Recognition Letters 37:201-209.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, A. Lerer. 2017. Automatic differentiation
in Pytorch.

[10] F. Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12:2825-2830.

[11] M. du Plessis, G. Niu, M. Sugiyama. 2014. Analysis of Learning from
Positive and Unlabeled Data. In Proceedings of the 27th International
Conference on Neural Information Processing Systems. 703-711.

[12] V. Vapnik. 1991. Principles of risk minimization for learning theory.
Proceedings of the 4th International Conference on Neural Information
Processing Systems. 831-838.

[13] R. Wright. 2017. Bagging Meta-Estimator for PU Learning.
[https://roywrightme.wordpress.com/2017/11/16/positive-unlabeled-
learning/].

[14] M. Zahangir Alom et al., 2019. A State-of-the-art Survey on Deep
Learning Theory and Architectures. Electronics 8(3):292.

[15] Ayyadevara V.K. 2018. Gradient Boosting Machine. In: Pro Machine
Learning Algorithms. https://doi.org/10.1007/978-1-4842-3564-5 6.


