
Imbalanced Data Classification with
Neural Networks and Classifiers

Andrea Boskovic

Submitted to the Department of Mathematics and Statistics in partial fulfillment of the
requirements for the degree of Bachelor of Arts with honors.

Faculty Advisor: Professor Amy Wagaman

May 17, 2021

i

ii

Acknowledgements

Writing this thesis would not have been possible without the support and mentorship of

people in the Amherst College community. I appreciate everyone who helped me through-

out this process.

First, I’d like to thank my thesis advisor, Amy Wagaman. She has supported me through-

out my academic career at Amherst and through the many months of thesis work. Her

thoughtfulness has shaped my approach to problem-solving, and her kindness has kept me

balanced and focused in the research process. I would also like to thank Nick Horton for

his dedicated, energetic mentorship and support throughout my time at Amherst.

Next, I’d like to express my gratitude toward the Amherst College Mathematics and Stat-

istics Department and all the professors for their dedication to teaching and supporting

students. Thanks to Amalia Culiuc and Ryan Alvarado for teaching me how to think crit-

ically in math. Thanks to Kat Correia and Kevin Donges for their caring and compassion.

Finally, I’d like to thank my friends from home for all the virtual laughs. Thanks to

Alison Ortiz-Dimas and Jonah Botvinick-Greenhouse for helping to take my mind off of

work with long conversations and juggling. Thanks to Justin Vernon, The Beatles, and

Freddie Gibbs for providing a soundtrack to my thesis, and thank you to the producers of

Young Sheldon for creating a thesis break show. Special thanks to Jamie Mazzola for his

aesthetic consultations on my graphs, for keeping me energized with jumping jacks and

midnight waffles, and for inspiring me throughout this process. Thank you to my parents

for always making me smile and supporting me over the course of my academic career.

iii

iv

Abstract

In statistics, we often want to predict a response variable based on data. Binary classifica-

tion is one example of this setting where the response variable takes on two possible values.

Classification techniques then aim to classify this response, also known as the class, based

on data in a way that maximizes accuracy. We are particularly interested in the classific-

ation of imbalanced data, a common data type in medical settings and fraud detection,

where the number of instances in each class drastically differs. Canonical classification

methods, such as classifiers and neural networks, often perform poorly on these imbal-

anced datasets. We show that lower imbalance levels, where the disparity between the

number of instances in each class is large, affect the performance of harder classification

tasks more than easier classification tasks. Through this investigation of how imbalance

levels in both synthetic and real-world datasets affect classification performance, we can

better understand how to mitigate this issue.

v

vi

Table of Contents

1 Introduction 2

2 Classification Techniques 5
2.1 Classifiers . 5

2.1.1 Gaussian Naive Bayes . 6
2.1.2 Random Forests . 7

Algorithm . 8
2.1.3 Gradient Boosting . 9

Boosting . 9
Gradient Descent . 9

2.2 Neural Networks . 10
2.2.1 Passing Data . 12

Forward Pass . 12
Backpropagation . 13
Hyperparameters . 13

2.2.2 Regularization . 13
L2 Regularization . 14
L1 Regularization . 15

2.2.3 Convolutional Neural Networks . 15
Structure . 16
Implementation . 17

3 Class Imbalance 18
3.1 Introduction . 18
3.2 Types of Imbalance: Binary and Multi-Class 20
3.3 Techniques for Mitigating Class Imbalance 21

3.3.1 Data Level Methods . 21
3.3.2 Algorithm Level Methods . 22

3.4 Metrics . 23
Sample Classifier Results . 25

vii

3.5 Generating Imbalanced Data . 26
3.5.1 Theoretical Background . 26
3.5.2 Code Background . 28
3.5.3 Function . 29
3.5.4 Baseline Simulation Tests . 30

Easy Classification Problem . 31
Difficult Classification Problem . 32

3.5.5 Investigating the Effects of Imbalance Levels 32
Classifiers . 33
Neural Networks . 34
Difficulty over All Imbalance Levels 36
Simulation Study . 38
Conclusions . 39

4 Imbalanced Data Classification 41
4.1 Image Classification Background . 41

4.1.1 Intel Images Dataset . 42
4.2 Image Data Experiments . 43

4.2.1 Experiment Structure . 44
Preprocessing . 44
Neural Network Structure . 46

4.2.2 Results . 46
Easy Classification Problem . 47
Hard Classification Problem . 48
Changing Imbalance Levels . 48

4.2.3 Conclusions . 50
4.3 Numerical Data Experiments . 50

4.3.1 Experiment Structure . 50
4.3.2 Results . 51

Comparison to Generated Data Results 53
4.3.3 Conclusions . 53

5 Loss Function Development 54
5.1 Loss Functions . 55

5.1.1 Focal Loss . 55
5.1.2 Label-Distribution-Aware Margin (LDAM) Loss 55
5.1.3 Gradient Harmonizing Mechanism (GHM) Loss 56

TABLE OF CONTENTS viii

5.1.4 Mean False Error (MFE) . 57
5.2 Methods . 58

5.2.1 Dataset . 58
5.2.2 Neural Network . 59

Dense Layer . 59
Batch Normalization Layer . 59
Dropout . 59
Structure . 60

5.2.3 Implementation . 60
Loss Functions . 61

5.3 Results . 61
5.4 Conclusions . 62

6 Conclusion 63

Appendix A Synthetic data 69
A.1 Synthetic Data Classification . 69

A.1.1 Synthetic Data Test: Classifiers . 69
Generating Classifier Results Figure 72

A.1.2 Synthetic Data Test: Neural Networks 74
Generating Neural Network Results Figures 79

A.2 Varying Imbalance levels . 81
A.2.1 Single-Attempt Classification . 81

Mathematical Process . 81
Function to Test Imbalance . 81

A.2.2 Simulation Study . 84

Appendix B Intel Images 89
B.1 Determine Difficulty of Classification Tasks 89
B.2 Neural Networks . 91

Appendix C Kaggle Credit Card Fraud 97
C.1 Comparison of Accuracy and Balanced Accuracy 97
C.2 Classification at Selected Values of ρ . 98
C.3 Performance over All Imbalance Levels . 101

C.3.1 Single-Attempt Classification . 101
C.3.2 Simulation Study . 103

TABLE OF CONTENTS ix

Appendix D New Techniques 106
D.1 State of the Art Loss Functions . 106

D.1.1 Focal Loss . 106
D.1.2 Gradient Harmonizing Mechanism (GHM) Loss 107
D.1.3 Label-Distribution-Aware Margin (LDAM) Loss 109

D.2 Loss Function Experiments . 110

TABLE OF CONTENTS x

TABLE OF CONTENTS xi

List of Figures

2.1 Binary Confusion Matrix . 6
2.2 Boosting . 9
2.3 Gradient Descent Visualization . 10
2.4 Inputs to a Perceptron . 11
2.5 Three-layer Neural Network . 11
2.6 Overfitting . 14
2.7 Convolutional Neural Network Example . 16
2.8 Convolution and Max Pooling Operations 17

3.1 Comparison of Multi-Class and Binary Target Variables 20
3.2 Easy Classification Task with Synthetically Generated Data 27
3.3 Difficult Classification Task with Synthetically Generated Data 28
3.4 Effects of Difficulty, Resampling, and Imbalance Level on Generated Data . 34
3.5 Neural Network Performance with and without Resampling 36
3.6 Classifier Performance over All Imbalance Levels 37
3.7 Classifier Performance Simulation over All Imbalance Levels 39

4.1 Sample Image from Intel Images Dataset 42
4.2 Principal Component Analysis (PCA) . 43
4.3 Intel Images Imbalance Level Performance 49
4.4 Discrete Imbalance Levels Kaggle Credit Cards Dataset 52
4.5 All Imbalance Levels Kaggle Credit Cards Data 52
4.6 Simulation Study of Kaggle Credit Cards Data 53

5.1 Illustration of LDAM Loss Function . 56
5.2 Neural Network Implementation Process 61

B.1 Example of Loss Function and Accuracy Convergence during Training . . . 92

xii

LIST OF FIGURES xiii

List of Tables

3.1 Sample Binary Classification Cost Matrix 23
3.2 Performance Metric Summary . 25
3.3 Classifier Accuracy and Balanced Accuracy Comparison 25
3.4 Generated Data Results with Easy Classification 31
3.5 Generated Data Results with Difficult Classification 32

4.1 Intel Images Classification Tasks with Predicted Difficulty 45
4.2 Training Proportions in Intel Images Premade Datasets 45
4.3 Structure of the CNN in the Intel Images Experiments 47
4.4 Balanced Accuracy in Intel Images Easy Classification Tasks 47
4.5 Balanced Accuracy in Intel Images Difficult Classification Tasks 48
4.6 Average Balanced Accuracy for Easy and Hard Experimental Settings . . . 49

5.1 Structure of Neural Network in Kaggle Credit Card Experiments 60
5.2 Neural Network Implementaion in Pytorch 61
5.3 ANN Performance Using State-of-the-Art Loss Functions 62

A.1 Experimental settings for the generated figure. 73

xiv

LIST OF TABLES 1

Chapter 1

Introduction

A primary goal in statistics involves predicting a response variable based on data. One

example of this goal is in binary classification. In this setting, the response variable, often

referred to as the target variable or class, takes on two possible values, and classification

techniques aim to classify this response based on data in a way that maximizes accuracy.

Classification techniques involve subsetting data into a training dataset, which is used to

train the model with data instances for which the response is known, and a testing dataset,

which contains instances where the response is treated as unknown.

We are particularly interested in classifying imbalanced data, a common data type in

many real world datasets, where the number of instances in each class varies significantly.

If we are examining a dataset containing information about incidence of a disease, we may

be interested in predicting whether a patient is sick or healthy. This dataset will likely

contain many more instances of healthy patients than sick patients, making the dataset

highly imbalanced. Canonical classification methods often perform poorly on imbalanced

datasets. In the case of the health dataset, a canonical classification method would likely

predict almost exclusively healthy patients in order to optimize accuracy.

This thesis discusses classification of imbalanced datasets in the binary setting with neural

networks and classifiers. Understanding imbalanced classificaton is critical in health ap-

plications. By developing techniques to improve classification in these datasets, we can

more accurately determine incidences of cancer, for instance, based on tumor images.

We investigate Convolutional Neural Networks (CNNs), a popular classification method

2

for image datasets, and Artificial Neural Networks (ANNs), modifying loss functions to

improve performance on imbalanced data.

In Chapter 2, we discuss classification, giving background on the topic with standard

classifiers and neural networks. Chapter 3 reviews the class imbalance problem, providing

motivation for the thesis and discussing current approaches for mitigating class imbalance.

We provide a series of experiments in image classification with CNNs and classification

using numerical data with ANNs in Chapter 4 and compare results to those of the gener-

ated data in Chapter 3. Finally, Chapter 5 tests the performance of state-of-the-art loss

functions on neural networks. We conclude the thesis with a summary of our findings in

Chapter 6.

Introduction 3

Introduction 4

Chapter 2

Classification Techniques

The goal of classification is to predict to which group a new data instance belongs. Clas-

sification techniques often involve subsetting data into a training dataset, which is used

to train the model with data instances for which the class is known, and a testing dataset,

which is used to test performance.

Two common classification methods are machine learning classifiers, discussed in Sec-

tion 2.1, and neural networks, discussed in Section 2.2. Each method has advantages and

disadvantages, and there are further subcategories of each method, i.e., there are many

types of machine learning classifiers and many neural network structures.

2.1 Classifiers

Classifiers are tools used for classification tasks, where the goal is to predict a target, or

class, based on data. Many different classifiers exist, and each is appropriate in different

types of problems. This section discusses three classifiers used in this thesis: Gaussian

Naive Bayes (Section 2.1.1), Random Forests (Section 2.1.2), and Gradient Boosting (Sec-

tion 2.1.3).

Classification tasks can be binary or multi-class. In binary tasks, the class can only take

on the values 0 or 1, as when classifying whether a credit card transaction is fraudulent

(1) or not (0), for instance. In multi-class problems, there are more than two values the

class can take on. One example of such a problem is classifying news articles from five

sources back to the correct source.

5

A variety of techniques are used to evaluate the performance of classifiers. One common

technique is the confusion matrix, which compares the number of instances in the actual

dataset to the predicted dataset for each class, as shown in Figure 2.1.

Figure 2.1: An example of a confusion matrix for a binary classification problem. Here,
TP represents True Positive, FP represents False Positive, FN represents False Negative,
and TN represents True Negative.

One of the most common metrics for evaluating classifier performance is accuracy, which

measures how often the classifier correctly labels instances (Johnson and Khoshgoftaar,

2019). It is defined as

Accuracy = TP + TN
Total .

Classifiers can be easily implemented in Python using the Scikit-Learn library (Pedre-

gosa et al., 2011). It contains many useful algorithms for machine learning tasks that can

be implemented with the same general structure, including our three chosen classifiers:

Gaussian Naive Bayes, Random Forests, and Gradient Boosting. To load this library,

one can simply use the import sklearn command (Pedregosa et al., 2011). We discuss

the theoretical background of some of these classifiers below. The discussion assumes the

reader is familiar with decision trees.

2.1.1 Gaussian Naive Bayes

The Naive Bayes classifier is a probabilistic classifier that applies Bayes Theorem to make

predictions, assuming independence and equal importance of predictors, hence the name

“naive” (Gayathri and Sumathi, 2016). For some class y and a set of n features x =

(x1, x2, . . . , xn), Bayes Theorem states that

Classification Techniques 6

P (y|x) = P (y)P (x|y)
P (x) .

Since the classifier assumes independence among predictors, we have that

P (y|x) = P (y)Πn
i=1P (xi|y)
P (x) .

Note that the denominator remains constant, so we can define a classifier that predicts y

as

ŷ = argmax
y

P (y)Πn
i=1P (xi|y).

The Gaussian Naive Bayes classifier follows the same framework as general Naive Bayes

classifiers, but they take on the additional assumption that every feature, each being a

continuous variable, is distributed according to a Gaussian distribution (Gayathri and

Sumathi, 2016). The classifier segments x by class and calculates the mean µj and vari-

ance σ2
j of x for each class level yj. Using these calculations of mean and variance for

each class, the classifier can then estimate probabilities with the equation for a normal

distribution for some observed value v (Gayathri and Sumathi, 2016). This yields the

following mathematical formulation:

P (x = v|y) = 1√
2πσ2

j

e
−

(v−µj)2

2σ2
j .

In general, Naive Bayes classifiers require small amounts of training data, making them

advantageous for small datasets (Gayathri and Sumathi, 2016). The equal importance and

independence assumptions do not hold for all datasets, making this technique inapplicable

to some scenarios.

2.1.2 Random Forests

The Random Forest classifier uses boostrap aggregation, or bagging, to improve upon

the popular Decision Tree classifier (Breiman et al., 2001). Bagging reduces the variance

of estimated prediction functions and works particularly well for decision trees, which

Classification Techniques 7

have high variance and low bias. Bagging averages noisy, unbiased models to reduce their

variance. Decision trees often have low bias when grown sufficiently deep but are generally

noisy, making these ideal candidates for bagging (Hastie, Tibshirani and Friedman, 2009).

Random forests essentially build a large collection of de-correlated trees and average them

using bagging. Whereas decision trees split each node using the best split among all

variables in the dataset using a majority vote, random forests split each node using the

best among a subset of predictors randomly chosen at that node, constructing multiple

trees, each on a bootstrapped dataset (Liaw, Wiener et al., 2002).

Algorithm

Our presentation of the random forest algorithm is based on Hastie, Tibshirani and Fried-

man, 2009 and Liaw, Wiener et al., 2002. The steps are explained below.

1. Draw B bootstrap samples from the training dataset.

2. Grow an unpruned decision tree Tk for each bootstrap sample, where k = 1, . . . , B.

Until the minimum node size smin is reached, recursively repeat each of the following

steps for each node:

(a) Select a variables at random from the n predictors.

(b) Select the best point to split among those variables.

(c) Split the node into two parts.

3. Output the ensemble of trees {Tk}B.

4. Create a prediction by aggregating the predictions of the B trees. Note that the

prediction ŷ is the majority vote: ŷ = majority vote{ŷk}B, where ŷk denotes the

class prediction for tree k.

Random forests can be implemented in Python with the Scikit-learn library with the

command:

from sklearn.ensemble import RandomForestClassifier.

Classification Techniques 8

Note that the parameters B and a have defaults in Scikit-learn, but can be altered by

users in the call to the classifier.

2.1.3 Gradient Boosting

In contrast to random forests, which build an ensemble of deep independent trees, gradient

boosting classifiers build an ensemble of shallow trees in a way where each tree improves

upon the previous one (Greenwell, 2020). Gradient boosting combines boosting with

gradient descent to achieve optimal results.

Boosting

Boosting adds new models to the ensemble sequentially. By starting with a weak learner,

such as a decision tree, the model boosts performance by continually adding trees, where

each new tree aims to fix errors in prediction from the previous one, as shown in Figure 2.2.

Although most boosting algorithms, including gradient boosting, use decision trees as their

base learners, boosting can improve upon predictions from any weak learner, which have

error rates only slightly better than random guessing (Greenwell, 2020).

Figure 2.2: Boosting ensembles models sequentially by finding errors with each model,
fixing those errors, and building a new model based on the new, learned information.
Based on (Greenwell, 2020, Figure 12.1).

Gradient Descent

Gradient descent is a function minimization process. In the case of machine learning

problems, the function we want to minimize is a loss, or cost, function in order to ensure

the algorithm gives optimal results. Often, this function is given by Mean Squared Error

Classification Techniques 9

(MSE), Mean Absolute Error (MAE), or Binary Cross Entropy (BCE), but gradient des-

cent can be performed on any differentiable loss function (Greenwell, 2020). We discuss

loss functions further in Chapter 5.

The general idea of gradient descent is to take steps in the direction negative to the

gradient at a point until it reaches a local minimum, as shown in Figure 2.3. The size

of these steps is determined by the learning rate parameter γ. Too small of a learning

rate increases computational time as the algorithm must run for more iterations, while

too large of a learning rate means that the algorithm may miss the minimum (Greenwell,

2020).

Figure 2.3: Gradient descent is used to minimize loss functions (Greenwell, 2020, Figure
12.4).

Gradient boosting can be implemented in Python with the Scikit-learn library with the

command:

from sklearn.ensemble import GradientBoostingClassifier.

To alter the parameter γ, the user can change the hyperparameter for the learning rate

within the Scikit-learn function.

2.2 Neural Networks

A neural network is a predictive model based on the architecture of the human brain.

Neurons, or memory units, learn from the features in the dataset through supervised

Classification Techniques 10

learning, a type of machine learning based on predicting a specific output from an input

(Efron and Hastie, 2016). In order to understand how neurons and neural networks work,

we consider the simplest example: a perceptron.

Figure 2.4: A perceptron with three inputs: x1, x2, x3 (Nielsen, 2015, Figure 3).

A perceptron, illustrated in Figure 2.4, takes in n inputs x1, x2, . . . , xn and produces a

binary output, y (Nielsen, 2015). The perceptron creates this output by assigning a series

of weights w1, w2, . . . , wn to represent the relative importance of each input to the output.

The binary output of the neuron, 0 or 1, is then determined by summing the weighted

inputs and checking if they are above a specified threshold c (Nielsen, 2015). This can be

represented mathematically as follows:

y =


0 ∑

iwixi ≤ c,

1 ∑
iwixi > c.

The calculation of an output y for a perceptron can be generalized to a larger neural

network, with multiple layers of perceptrons, as well. As in the single perceptron case,

each perceptron in each layer of a more complex neural network produces a single output

that then gets propagated to the next layer and ultimately produces a single output y, as

evident in Figure 2.5.

Figure 2.5: A neural network with three layers. Based on (Nielsen, 2015, Figure 4).

Now, we amend our definition of the output y for the sake of simplicity. Observe that

Classification Techniques 11

∑
iwixi can be expressed equivalently as a dot product: w ·x (Nielsen, 2015). We can also

simplify the right side of the inequality by subtracting the threshold value c from both

sides and defining the bias of the perceptron as b := −c (Nielsen, 2015). Now we can

define y as

y =


0 w · x+ b ≤ 0,

1 w · x+ b > 0.

The output in this form is known as the logit. Many models, however, do not use the logit

form because this form is relatively simple, only allowing for linearity. In order to introduce

non-linearity into the neural network, namely to the output of a neuron, we can apply a

nonlinear activation function. One such activation function is the logistic function, where

the transformation of y is given by g(y) = 1
1+ey (Skansi, 2018). In experiments discussed

in Chapter 4 and Chapter 5, we use a Rectified Linear Unit (ReLU) activation function,

which is given by f(x) = max(0,x), representing the positive part of the function where

x is a neuron (Nwankpa et al., 2018).

2.2.1 Passing Data

A fundamental part of neural networks involves passing data. This occurs in two ways:

forward passes and backpropagation (Skansi, 2018).

Forward Pass

Now that we have established a basic structure for neural networks, the next step in

understanding their architecture is by understanding how data is passed through the

neurons. The passing of the input through the perceptrons in each layers is known as

the forward pass. This is simply the sum of weighted inputs to each perceptron and can

be represented as a composition of functions (Skansi, 2018). In Figure 2.5, let f1, f2, f3

denote each layer of perceptrons, respectively. Then, for some input vector x, the output

vector y, is given by:

y = f3(f2(f1(x))).

Classification Techniques 12

However, in order to create a running neural network, we need to update weight values,

which is done through backpropagation (Skansi, 2018).

Backpropagation

In backpropagation, the network measures error during classification and modifies the

weights so as to minimize the error. In mathematical terms, backpropagation can be de-

scribed as gradient descent (Skansi, 2018). Gradient descent, as discussed in Section 2.1.3,

is a process by which we can minimize a function. In the case of backpropagation, we are

interested in finding optimal values for w and b, weights and biases, respectively, in order

to minimize some cost function C(w, b) (Efron and Hastie, 2016). This can be written as

wnew = wold − γC.

Here, wnew represents the updated weight, wold represents the weight before being updated,

γ is the learning rate, and C is the cost function that we want to minimize (Skansi, 2018).

We can then use gradient descent, discussed in detail in ??, to minimize the cost, or loss,

function.

Hyperparameters

To optimize the learning process, we must specify hyperparameters, or fixed parameters

that control learning. Since these affect the learning process, namely the weight values

that are updated, it is crucial to determine the best set of hyperparameters. One common

method for this is a grid search, but this technique can be very computationally expensive

when the algorithm must search over many combinations of hyperparameters.

2.2.2 Regularization

In order to understand regularization, we first must understand overfitting. Suppose we

have two classes and two variables of interst. Some classifier could separate the two classes

perfectly by simply drawing a line between the classes, leading to 100% training accuracy.

Although this would classify the training data perfectly, it would not necessarily generalize

Classification Techniques 13

to other data, such as the testing data, well. This problem, where we capture accidental

properties in the data, is known as overfitting. Regularization adds a parameter R to the

cost function so that it cannot pinpoint datapoints exactly: Cnew = Coriginal +R (Skansi,

2018). It does this by penalizing the cost function so that it becomes impossible to draw

a line that simply separates the two classes, as seen in Figure 2.6.

Figure 2.6: In (A), the dotted line shows overfitting where one class is O and the other
class is X and these are completely separated. In (B), we see the effects of regularization.
Based on (Skansi, 2018, Figure 5.1).

L2 Regularization

One common type of regularization is L2, otherwise known as weight decay (Skansi, 2018).

In this case, the regularization parameter R that we add to the cost function simply

becomes the L2 norm of the vector of weights, w. Recall that the L2 norm of w is defined

as

||w||2 :=
√
w2

1 + w2
2 + . . . w2

n.

Often, however, we use the squared L2 norm, i.e., ||w||22 = ∑
iw

2
i , and we also add a

regularization parameter λ to control the amount of regularization that is divided by m

so that it is proportional to the number of observations (m), which reflects the number of

instances observed before hyperparameters are modified (Skansi, 2018). Our regularized

cost function then becomes

Cnew = Coriginal + λ

m

∑
i

w2
i .

Classification Techniques 14

In order to figure out how to update the weights based on the updated cost function Cnew,

we take the partial derivative with respect to w on both sides, giving us

wnew = wold − γ
(
∂Coriginal

∂w
+ λ

m
w

)
.

L1 Regularization

L1 regularization is best used for noisy data with many irrelevant instances (Skansi, 2018).

It can be derived in the same way as L2, shown in Section 2.2.2. The main difference

between L1 and L2 is that L1 uses an absolute value instead of squares (Skansi, 2018).

The L1 regularized cost function is given by

Cnew = Coriginal + λ

m
||w||1 ⇒ Cnew = Coriginal + λ

m

∑
i

|wi|.

By tuning the cost function, L1 and L2 regularization often improve the performance of

neural networks.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network architecture often

used to process two-dimensional, grid-like data, such as images (W. Liu et al., 2017).

As with neural networks in general, convolutional neural networks contain neurons with

weights and biases that are updated in the learning process (F.-F. Li, 2018).

Traditional neural networks receive an input that they then transform in the hidden layers

and output into the output layer. These neural networks, however, do not scale well to

full images because the inherent full connectivity wastes computational time and can lead

to overfitting (F.-F. Li, 2018).

The architecture of CNNs avoids the inefficiencies of traditional neural networks with

a constrained structure that is optimized for image data (F.-F. Li, 2018). The main

difference between regular neural networks and CNNs is that the layers of CNNs have

Classification Techniques 15

neurons arranged in three dimensions to work for image data: width, height, and depth.

Figure 2.7 illustrates this structure.

Figure 2.7: On the left, we see a standard neural network, where the input layer, hidden
layers, and output layer are each one-dimensional. The right side illustrates a simple
CNN architecture. Notice that in the CNN architecture, the neurons are arranged in
three dimensions. This image was taken from (F.-F. Li, 2018, Figure 1).

Structure

CNNs have a fundamental structure that allows them to use images to predict class prob-

abilities or class labels. This structure involves five types of layers: Convolutional layers,

ReLU layers, Pooling layers, a Flattening layer, and a Fully Connected layer.

Convolutional layers apply a convolution operation, or a combined integration of two

functions, to their input (Weaver, 2017). To be specific, we define a small, often 3 ×

3 matrix, to represent the kernel K and overlay it in all possible ways to the image

I (Velickovic, 2017). The convolution operator then records the sums of elementwise

products as follows:

(I∗K)xy =
h∑
i=1

d∑
j=1

Kij · I(x+i−1,y+j−1).

As such, the convolution operator allows us to exploit image structure, namely that neigh-

boring pixels influence each other more than pixels on other sides of an image.

Convolutional layers, then, are responsible for extracting features with a feature detector

and placing them into a feature map that preserves the spatial relationship of the pixels in

the image (Weaver, 2017). We often apply a Rectified Linear Unit layer, or ReLU layer, to

convolutional layers for regularization. These decrease the linearity of images, creating a

rougher version of the image. This image is then fed into Pooling, or Max Pooling, layers,

which remove unnecessary information while preserving features. We can think of Max

Classification Techniques 16

Pooling as downsampling our convolutional image to preserve maximally activated parts

of the image, as shown in Figure 2.8 (Velickovic, 2017). Note that in Figure 2.8, matrices

I and K are unrelated: I corresponds to the initial image, while the kernel K can be

chosen by the user.

Figure 2.8: In (A), our kernel matrix K is applied to an image I, producing a convoluted
image I∗K. We can then apply Max Pooling, shown in (B), to this image to extract the
most important features of the image (Velickovic, 2017).

The pooled feature map is then “flattened” with a Flattening layer for dimensionality

reduction. The flattened feature map is then fed into the Fully Connected layer, where

we concatenate our CNN to an artificial neural network. Making this connection allows

us to train our neural network and ultimately get label outputs.

Implementation

We use two main methods to implement CNNs in Python: Keras and Pytorch. Each

method has different advantages. Pytorch is more customizable for complex network

structures but Keras is simpler to implement. We use Keras for the intial Intel Images

experiments and Pytorch for experiments with unique loss functions.

In addition to implementing a loss function for all of our experiments and setting hy-

perparameters, we also define an optimizer. This helps improve the rate at which the

loss function converges. Throughout this work, we use an Adaptive Motive Estimation

(Adam) optimizer, an adaptive learning rate technique, which calculates learning rates

for each model parameter separately (Adam — latest trends in deep learning optimization

n.d.).

Classification Techniques 17

Chapter 3

Class Imbalance

Class imbalance is prevalent in many real-world datasets. This common data type of-

ten makes classification tasks very difficult because canonical machine learning methods

struggle to classify data in this setting. This chapter discusses class imbalance in both

binary and multi-class classification problems.

3.1 Introduction

Binary target variables often have an unequal representation of the two classes. In im-

balanced data, common in health data and fraud data, it is common to have ten times

as many instances of the negative class. Consider a dataset containing information about

cancer incidence: we expect many more negative instances than positive instances, creat-

ing an inherently imbalanced dataset where the minority class, or positive class, contains

instances where a patient has cancer and the majority class, or negative class, contains

instances where a patient does not have cancer. In such datasets, we are often more

interested in predicting the positive class correctly than predicting the negative class cor-

rectly. With the cancer dataset, predicting the positive class accurately means that we

are detecting cancer effectively so that patients can get appropriate care quickly.

Despite the class imbalance problem, many common deep learning techniques are not at-

tuned to this issue. In order to mitigate class imbalance and improve model performance,

we must change metrics for evaluating models to get an accurate sense of model perform-

ance, implement sampling methods to balance class distributions, and modify existing

18

algorithm structures to better capture minority class behavior. By doing so, we can more

accurately predict the minority class and maximize model performance.

We refer to the Kaggle Credit Cards dataset, which displays extreme class imbalance, to

contextualize class imbalance metrics and techniques throughout this chapter and later for

classification with a CNN (Credit Card Fraud Detection n.d.). In addition to twenty-eight

unnamed features obtained through Principal Component Analysis (PCA), a common

dimensionality reduction technique, the dataset also contains information about time of a

credit card transaction, the amount of the transaction, and whether or not the transaction

was fraudulent, which we refer to as the class.

Out of all of the credit card transactions in the dataset, only 0.17% were fraudulent, and the

remaining 99.83% were not fraudulent. Traditional machine learning techniques, however,

often incorrectly classify positively labeled data because they are built to optimize for

accuracy. In this example, standard techniques will tend to classify instances of fraudulent

credit card transactions as non-fraudulent because there are many more instances of non-

fraudulent transactions. Assuming the same class distribution in the training and testing

datasets, by predicting all transactions to be non-fraudulent, classifiers can achieve 99.83%

accuracy, i.e., the proportion of non-fraudulent credit card transactions in the dataset.

This high accuracy is useless when our goal is to accurately classify positive instances, or

fraudulent transactions.

As severely imbalanced datasets can have more extreme impacts on model performance,

a metric called the imbalance ratio ρ is used to determine the level of class imbalance:

ρ = mp

mn

.

Here, mn represents the number of instances in the negative, or majority, class, and

mp represents the number of instances in the positive, or minority, class (Johnson and

Khoshgoftaar, 2019). Higher values of ρ indicate that the dataset is more balanced, while

lower values of ρ indicate that the the dataset is relatively imbalanced. For instance, for

mn = 400 and mp = 100, we have that ρ = 100
400 = 0.25. This dataset with a total, T , of 500

Class Imbalance 19

observations is more balanced than one with mn = 450, mp = 50, which has an imbalance

level of ρ ≈ 0.11.

As per this definition of ρ, values below 1 indicate some level of imbalance, but ρ < 0.2 are

likely to be particularly problematic. Note that there is no strict cutoff for a problematic

imbalance level, but values of ρ closer to zero are more likely to make classification difficult.

3.2 Types of Imbalance: Binary and Multi-Class

Imbalanced data is prevalent in both binary and multi-class target variables. Binary clas-

sification, the most developed branch of imbalanced learning, can reflect predicting sick or

healthy patients in health data, for instance (Krawczyk, 2016). In security tasks, a binary

classification task can reflect detecting attacks on a system. Multi-class classification, on

the other hand, involves a target variable that can take on more than two values, where

one of these values occurs much more frequently than the others. Figure 3.1 illustrates a

simple example of a binary and multi-class target variable.

Figure 3.1: A sample dataset with a binary and multi-class target variable. On the left,
the binary target variable is imbalanced with the 0 class being the majority class and the
1 class being the minority class. Though there is not much data shown, the right shows a
small dataset with a multi-class target, and the 2 class is the minority class in this case.

Although the imbalance ratio largely dictates the difficulty of the imbalanced classification

task, binary classification tasks change in difficulty given the proximity of the two class

distributions. If the two distributions do not overlap significantly, the classification task

Class Imbalance 20

becomes much easier for algorithms to solve. With overlapping class distributions, the

task is generally more difficult, despite the imbalance ratio (Krawczyk, 2016). Section 3.5

below gives a detailed example of this idea.

3.3 Techniques for Mitigating Class Imbalance

There are many techniques that aim to improve classification results when dealing with

imbalanced datasets. These techniques can be divided into two types: data level meth-

ods and algorithm level methods. Although each technique improves classification with

imbalanced datasets, the two methods approach the problem differently.

3.3.1 Data Level Methods

One of the two main methods of mitigating class imbalance, data level methods directly

alter the training dataset. The main goal of these methods is to balance the dataset by

either:

1. Undersampling: Removing instances from the majority class to the level of the

minority class or

2. Oversampling: Synthetically creating instances of the minority class to match the

level of the majority class (Johnson and Khoshgoftaar, 2019).

Both undersampling and oversampling are generally referred to as resampling techniques,

methods of reducing bias in machine learning and deep learning (Johnson and Khoshgoftaar,

2019). Resampling methods balance class distributions by creating or removing instances

in data. In balancing positively and negatively labeled instances, classification tasks often

become easier to solve.

The simplest forms of these sampling methods are random oversampling (ROS), which

randomly duplicates instances from the minority class, and random undersampling (RUS),

which randomly removes instances from the majority class (Johnson and Khoshgoftaar,

2019). Each technique has drawbacks. Because we remove examples in undersampling,

we lose information by nature of the technique, and in cases with small datasets, we can

Class Imbalance 21

lose valuable data points that the model can learn from. Oversampling techniques, on

the other hand, are prone to overfitting because duplicating instances means a classifier

is more likely to create a decision boundary separating the two classes exactly, making it

difficult to generalize to other data. Although we want separation between the classes and

seek to optimize number of correctly classified instances in the dataset, overfitting means

the model is attuned to the intricacies of the training dataset. In other words, the model

will likely fail to generalize to the testing dataset, ultimately worsening performance.

Researchers have created several advanced techniques to mitigate the problems with ba-

sic undersampling and oversampling techniques. One such method is Synthetic Minority

Oversampling Technique (SMOTE), outlined in (Chawla et al., 2002), which creates syn-

thetic instances by selecting k-nearest neighbors from the minority class. Variants of

SMOTE, such as SMOTE Edited Nearest Neighbors (SMOTEENN) and SMOTETomek

have been developed, which use a nearest neighbors approach and Tomek links, respect-

ively, to oversample the minority class and undersample the majority class (Chawla et al.,

2002).

3.3.2 Algorithm Level Methods

Unlike data level methods, algorithm level methods do not change the distribution of the

training data. Instead, these methods adjust the algorithm’s learning process to increase

the importance of the minority class, often with weights and penalties (Johnson and

Khoshgoftaar, 2019).

Cost-sensitive learning assigns costs, or penalties, to each class with a cost matrix. By

increasing the cost of the majority class, we place more importance on correctly classifying

the minority class than correctly classifying the majority class (Weiss, 2004). A cost matrix

is illustrated in Table 3.1. Entry cij of the cost matrix represents the cost associated with

predicting class i when the class is actually j, so consequently, we often set entries in

the cost matrix to 0 when i = j (Johnson and Khoshgoftaar, 2019). These cost-sensitive

learning methods can be characterized into two groups: direct methods or meta-learning

methods (Ling and Sheng, 2008).

Class Imbalance 22

In direct methods, classifiers are cost-sensitive in themselves, using misclassification costs

in learning algorithms so that the optimization process minimizes total cost instead of

total error (Ling and Sheng, 2008; Johnson and Khoshgoftaar, 2019). Meta-learning

methods, on the other hand, are not cost-sensitive initially, but use pre-processing of

the training data and post-processing of the output to create a cost-sensitive learning

algorithm (Ling and Sheng, 2008). Thresholding methods redefine the decision threshold

during classification using p∗ := c10
c10+c01

, shown in Table 3.1 (Johnson and Khoshgoftaar,

2019). Threshold-moving is a meta-learning method, as it post-processes the output class.

True Positive True Negative
Predicted Positive c11 c10
Predicted Negative c01 c00

Table 3.1: A sample cost matrix for a binary classification problem.

One difficulty in implementing cost-sensitive learning into classifiers stems from choosing

the optimal cost matrix. It is often defined empirically, based on prior knowledge, or by

an expert in the field (Johnson and Khoshgoftaar, 2019). Other methods include using a

validation set, but this can be computationally expensive, especially when the dataset is

large.

3.4 Metrics

Traditional metrics for evaluating machine learning and deep learning models often do not

capture model performance with imbalanced datasets. To illustrate this concept, we can

consider the following example using a breast cancer dataset (Zwitter and Soklic, 1998).

This dataset is moderately imbalanced, with the majority class containing 63% of total

instances, and the minority class containing the remaining 37%. If a classifier simply

classified all the data as positive, as many do with imbalanced data, we would achieve an

accuracy of 63%, but this leaves the remaining 37% of the negatively-labeled observations

classified incorrectly. This leads to a high false negative rate, meaning the model will not

detect any patients who have cancer.

To combat the issue of incorrectly-classified positive instances, we outline several metrics

Class Imbalance 23

for model evaluation of imbalanced data that have been developed and explain them in

relation to the breast cancer example in Figure 3.2.

1. Precision: Proportion of all instances labeled positive that are truly positive, given

by
TP

TP + FP .

2. Recall: True positive rate, or the proportion of correctly labeled positive instances.

This can be calculated as:
TP

TP + FN .

3. Balanced Accuracy: This is an accuracy metric that is more sensitive to the

minority class. It considers True Positive Rate (TPR), the proportion of correctly

classified positives, and True Negative Rate (TNR), the proportion of correctly clas-

sified negatives, in its calculation:

1
2 · (TPR + TNR).

4. G-Mean: A performance metric that combines TPR and TNR as follows:
√
TPR · TNR.

5. F-Measure: Often referred to as the F1 score, this metric is a combination of

precision and recall with harmonic mean:

2 · Recall · Precision
Recall + Precision .

Table 3.2 displays the performance of the Gradient Boosting classifier on the breast cancer

dataset using metrics outlined in Section 3.4. We show accuracy and percent of the dataset

that belongs to the majority class as baselines for performance comparison. As expected,

accuracy slightly overestimates classifier performance at 95.3% compared to the balanced

Class Imbalance 24

Metric Value
Accuracy 95.3%

Percent Majority Class 37%
Precision 50%
Recall 93.7%

Balanced Accuracy 94.9%
G-Mean 77.3%

F-Measure 65.2%

Table 3.2: Summary of performance of the Gradient Boosting classifier on the breast
cancer dataset with respect to the metrics outlined in Section 3.4.

accuracy of 94.9%. Note that a lower percent of observations in the majority class in this

dataset, i.e., a lower imbalance level, would exacerbate this difference.

Another popular metric for model performance with imbalanced data is the receiver op-

erating characteristics (ROC) curve, which plots TPR over FPR to depict the tradeoff

between classifying the minority class correctly and classifying the majority class incor-

rectly (Johnson and Khoshgoftaar, 2019). A summary of the ROC curve is the area under

the curve (AUC). In classification problems, we aim to maximize AUC because a higher

AUC means the model better distinguishes between the minority and majority classes. By

implementing performance metrics that are less biased towards the negative class, we are

better able to evaluate model performance.

Classifier Balanced Accuracy Accuracy
Gradient Boosting 0.562 0.999

Gaussian Naive Bayes 0.828 0.993
Random Forest 0.879 1.000

Table 3.3: A comparison of accuracy and balanced accuracy metrics of three classifiers of
interest: Gradient Boosting, Gaussian Naive Bayes, and Random Forest on the Kaggle
Credit Cards dataset.

Sample Classifier Results

We can also evaluate the performance of the three classifiers discussed in Chapter 2 on the

Kaggle Credit Cards dataset. We are interested in further comparing accuracy and bal-

anced accuracy of Gradient Boosting, Gaussian Naive Bayes, and Random Forest. Based

on Table 3.3, we see that all three classifiers perform extremely well in terms of accuracy,

Class Imbalance 25

illustrating the bias of the accuracy metric toward the majority class. There is much

more variety in the balanced accuracy metric, with Gradient Boosting performing worst

with balanced accuracy only 56.2% and Gaussian Naive Bayes performing best with bal-

anced accuracy 99.3%. This difference in performance with respect to balanced accuracy

is likely a product of the classifiers’ decision-making process. Despite the disparity in

balanced accuracy for the three classifiers, they all achieve relatively high accuracy.

3.5 Generating Imbalanced Data

In order to understand how deep learning techniques and machine learning classifiers

interact with imbalanced data, we must first understand the structure of imbalanced data.

This is not a trivial problem, as an imbalanced dataset can contain any number of features,

only some of which will be informative in predicting the target. Taking this into account,

we create a function that generates imbalanced data to experiment with. We outline a

technique to generate imbalanced data given different parameters.

3.5.1 Theoretical Background

Our imbalanced data generation function takes in the following six inputs:

• n_pos: number of positive instances, or rows with a positive label

• n_neg: number of negative instances, or rows with a negative label

• n_features: number of features, or columns

• n_inf_features: number of features that inform the outcome in the label

• sd: standard deviation of the normal distribution for the minority class

• class1_mean: mean of the normal distribution for the minority class

In constructing an imbalanced dataset for our example, we split the problem into construct-

ing the majority and minority class. For the sake of simplicity, assume that n_features = 1

and n_inf_features = 1. We first construct the majority class. Let X represent the ma-

jority class. Then X ∼ N(0, 1), where the dimension of the array that these draws are

Class Imbalance 26

stored in is n_neg × n_features. Let Y represent the informative subset of the minority

class. Then Y ∼ N(µ, σ), where µ, σ are defined as inputs to the function, class1_mean

and sd, respectively. Note that all informative variables have the same distribution by

this definition.

Note that the parameters µ and σ can be changed to alter the difficulty of the classific-

ation problem. X ∼ N(0, 1) by default, so suppose that we set class1_mean = 5 and

sd = 1 such that Y ∼ N(5, 1). Then the two distributions X and Y are nearly completely

separated, as evident in Figure 3.2, making it easy for classifiers to tackle the problem.

To make the classification problem more difficult, set class1_mean = 1 and sd = 1 such

that Y ∼ N(1, 1). Then the distributions of X and Y overlap significantly, making it more

difficult for classifiers to distinguish between X and Y , or the majority and minority class,

as shown in Figure 3.3. In other words, Figure 3.2 shows easily separable classes and

Figure 3.3 shows classes that are difficult to separate.

Figure 3.2: Example of an easy classification problem, where X ∼ N(0, 1) in blue and
Y ∼ N(5, 1) in orange.

We can choose n_pos and n_neg to create the ratio of imbalanced data we want to test.

Recall, the class imbalance ratio, ρ, is defined as

ρ = mP

mN

,

Class Imbalance 27

Figure 3.3: Example of a difficult classification problem, where X ∼ N(0, 1) in blue and
Y ∼ N(1, 1) in orange.

where mP represents the number of positive labels and mN represents the number of

negative labels (Luque et al., 2019). If a dataset with 2,000 instances has 1,900 negative

instances and 100 positive instances, then ρ = 0.05. Fixing sample size to be 2,000, if the

dataset is more balanced with 1,400 negative instances and 600 positive instances, then

ρ ≈ 0.43. In other words, if we fix the size of a dataset, more imbalanced datasets have

lower values of ρ.

Finally, choosing n_features and n_inf_features requires the user to decide how many

of the total features they would like and how many of them inform the class label.

3.5.2 Code Background

There are several packages needed to run the imbalanced data generation script. You can

import them in Python as follows:

import random

import numpy as np

import pandas as pd

The random package generates draws from the specified normal distribution, the numpy

Class Imbalance 28

package creates arrays to store the generated samples, and pandas converts the numpy

arrays to dataframes to make them easier to manipulate.

3.5.3 Function

The function is split into two main parts: defining the classes and combining the datasets.

We use two features in these simulations, and, for simplicity of notation, refer to the

distributions as X and Y with usual univariate notation, though they are bivariate normal

with orthogonal features.

The function first defines the negative class, X, where X ∼ N(0, 1). Then the function

defines the informative part of the minority class, class1, i.e., Y , where Y ∼ N(µ, σ)

as outlined in Section 3.5.1. Finally the function defines the non-informative part of the

minority class, classr1, which follows the same distribution as X. We combine these

classes using the pandas package.

The imbalanced data generator function is given below:

1 def imbalanced_data_generator (n_pos , n_neg , n_features ,

2 n_inf_features , sd , class1_mean):

3

4 ##### DEFINE CLASSES #####

5 # Define negative class

6 class0 = np.array(np. random . normal (loc = 0, scale = 1,

7 size = (n_neg* n_features)))

8 class0 = np. reshape (class0 , (n_neg , n_features))

9 class0 = pd. DataFrame (class0)

10

11 # Define informative minority class with mean and std. dev.

12 class1 = np.array(np. random . normal (loc = class1_mean , scale = sd ,

13 size = (n_pos* n_inf_features)))

14 class1 = np. reshape (class1 , (n_pos , n_inf_features))

15 class1_cols = np.r_[(n_features - n_inf_features):

16 (n_features + n_inf_features - 2)]

17 class1 = pd. DataFrame (class1 , columns = class1_cols)

18

Class Imbalance 29

19 # Define non - informative minority class (based on Std. Normal)

20 classr1 = np.array(np. random . normal (loc = 0, scale = 1,

21 size = (n_pos *(n_features -

22 n_inf_features))))

23 classr1 = np. reshape (classr1 , (n_pos , (n_features - n_inf_features)))

24 classr1 = pd. DataFrame (classr1)

25

26 ##### COMBINE CLASSES INTO DATASET #####

27 # Concatenate datasets

28 c1_full_names = np.r_ [0:(n_features)]

29 class1_full = pd. concat ([class1 , classr1], axis =1)

30 class1_full = pd. DataFrame (class1_full , columns = c1_full_names)

31 data = pd. concat ([class0 , class1_full], axis = 0)

32

33 # Add labels

34 labels = ["0", "1"]

35 full_labels = np. repeat (labels , [n_neg , n_pos])

36 full_labels = pd. DataFrame (full_labels)

37 full_labels = full_labels . rename (columns = {0: 'target '})

38

39 # Create full dataset

40 full_data = np. append (data , full_labels . to_numpy (), axis = 1)

41 full_data = pd. DataFrame (full_data)

42 full_data . columns = [* full_data . columns [:-1], 'target ']

43

44 # Return dataset

45 return (full_data)

Listing 3.1: Data Generation Function

3.5.4 Baseline Simulation Tests

Based on the theory outlined in Section 3.5.1, we test the imbalanced data generation

function with a simple, easy case and a more difficult case by adjusting the mean of the

Normal distribution we specify. In both cases, we hold the number of features, number of

Class Imbalance 30

informative features, number of positive instances, number of negative instances, and the

standard deviation of the informative minority class constant. We set these parameters:

• n_pos = 100

• n_neg = 2000

• n_features = 2

• n_inf_features = 2

• sd = 1

Note that by setting n_pos = 100 and n_neg = 2000, we have an imbalance level ρ =
100
2000 = 0.05. In both the easy and hard cases, we test Gradient Boost, Random Forest,

and Gaussian Naive Bayes with and without SMOTE resampling. Note that we use a

70:30 train test split, and our random seed throughout the simulation is set to 20. Each

dataset is synthetically generated once with each parameter combination.

Easy Classification Problem

For the simple case, we have X ∼ N(0, 1) in two dimensions for comparison and Y ∼

N(5, 1) in two dimensions. Due to the separation of the classes, we expect the classifiers

to do well with and without resampling. The results of the experiments are shown in

Table 3.4.

Classifier Resampling Balanced Accuracy
Gradient Boost None 1.000
Gradient Boost SMOTE 1.000
Random Forest None 0.985
Random Forest SMOTE 1.000
Gaussian NB None 1.000
Gaussian NB SMOTE 1.000

Table 3.4: Results from the classification of artificially generated data for an easy problem
comparing no resampling to SMOTE resampling.

Based on these results, the imbalanced data generator performs as expected, achieving

100% balanced accuracy in almost all cases regardless of classifier and resampling tech-

Class Imbalance 31

nique. Although the Random Forest does not achieve 100% accuracy without resampling,

this is due to one incorrectly classified, false negative, instance.

Difficult Classification Problem

In the hard case, we again have X ∼ N(0, 1) by default but Y ∼ N(1, 1), both again in

two dimensions. Recall that making µY closer to µX makes the classification problem more

difficult due to overlap of the classes. As a product of this overlap, we expect the classifiers

to perform poorly, with balanced accuracy around 50%, on average. It is possible that we

will see some improvement in balanced accuracy with resampling, but this will likely be

negligible. The results of the experiments are shown in Table 3.5.

Classifier Resampling Balanced Accuracy
Gradient Boost None 0.497
Gradient Boost SMOTE 0.462
Random Forest None 0.497
Random Forest SMOTE 0.519
Gaussian NB None 0.500
Gaussian NB SMOTE 0.434

Table 3.5: Results from the classification of artificially generated data for an difficult
problem comparing no resampling to SMOTE resampling.

As expected, all of the classifiers perform poorly on this harder classification problem,

regardless of resampling. On average, the classifiers are able to achieve a balanced accur-

acy of 0.485, near what we expected. Unlike in the easy case, however, Random Forest

performs best both with and without resampling, although it ties with Gradient Boost

without resampling.

3.5.5 Investigating the Effects of Imbalance Levels

After considering both easy and difficult classification tasks by testing effects of classifiers,

resampling, and data distributions for a fixed ρ, we investigate the effects of imbalance

level on balanced accuracy in both classifiers and neural networks.

Class Imbalance 32

Classifiers

In the classifier experiments, we consider three levels of difficulty by changing the center

and spread of our distributions of interest. We consider the following settings in two

dimensions, ordered from hardest to easiest:

• X ∼ N(0, 1), Y ∼ N(2, 3),

• X ∼ N(0, 1), Y ∼ N(3, 3),

• X ∼ N(0, 1), Y ∼ N(5, 3).

We test three imbalance levels in each of these settings, and we hold the number of

generated observations constant at 2, 100. To change the imbalance levels, we simply

change the n_pos and n_neg arguments to the imbalanced_data_generator function

given in Section 3.5.3. The imbalance levels are as follows:

• High imbalance: n_pos = 100 and n_neg = 2000 ⇒ ρ = 100
2000 = 5%,

• Medium imbalance: n_pos = 190 and n_neg = 1910 ⇒ ρ = 190
1910 ≈ 10%,

• Low imbalance: n_pos = 420 and n_neg = 1680 ⇒ ρ = 420
1680 = 20%.

For each set of distributions and imbalance levels, we vary resampling, considering no

resampling or SMOTE resampling, and the classification method: Gradient Boosting (ex-

periments 1, 2, 7, and 8 in each panel), Random Forest (experiments 3, 4, 9, and 10 in

each panel), and Gaussian Naive Bayes (experiments 5, 6, 11, and 12 in each panel). We

report the results in Figure 3.4.

In Figure 3.4, we see that balanced accuracy is lower for the hard, control task, i.e., the

setting X ∼ N(0, 1), Y ∼ N(2, 3), than the easier tasks. Note that each data point in the

figure represents a particular experimental setting for one classifier. We also observe that

resampling with SMOTE significantly improves balanced accuracy for all classifiers but

affects problems with lower initial balanced accuracy more prominently.

It’s important to note that although we expect the classifiers to perform better on gener-

ated data with higher imbalance levels, i.e., higher values of ρ, the experiments don’t show

Class Imbalance 33

Figure 3.4: Comparison of three pairs of distributions that are used to alter the difficulty
of classification. “Easy Distributions,” “Medium Easy Distributions,” and “Hard Distribu-
tions” compare Y ∼ N(5, 3), Y ∼ N(3, 3), and Y ∼ N(2, 3), respectively, to our baseline:
X ∼ N(0, 1).

this trend. In both the easy distributions and medium easy distributions, the classifiers

perform best on the most imbalanced data in the “easy” case, though this trend doesn’t

hold for the harder distributions in each set of experiments.

Neural Networks

The neural network experiments for generated data consider four levels of difficulty, each

in two dimensions:

• Most Difficult: X ∼ N(0, 1), Y ∼ N(1, 1),

• Medium Hard: X ∼ N(0, 1), Y ∼ N(2, 1),

• Medium Easy: X ∼ N(0, 1), Y ∼ N(3, 1),

• Easy: X ∼ N(0, 1), Y ∼ N(5, 1).

These settings, in order from most to least difficult, hold the spread constant at σ = 1

but vary center. As in the classification experiments, we use X ∼ N(0, 1) as a baseline

for comparison. In each of these experimental settings, we also vary the imbalance levels:

Class Imbalance 34

• High imbalance: n_pos = 100 and n_neg = 2000 ⇒ ρ = 100
2000 = 5%,

• Medium imbalance: n_pos = 190 and n_neg = 1910 ⇒ ρ = 190
1910 ≈ 10%,

• Low imbalance: n_pos = 420 and n_neg = 1680 ⇒ ρ = 420
1680 = 20%.

Throughout these experiments, we keep a set of constant hyperparameters. Using a batch

size of 16, 50 hidden nodes, 100 epochs and a learning rate of 10−4, we see that the loss

functions converge to 0, indicating that the neural networks have successfully optimized

the loss functions.

We plot the balanced accuracy of the experiments for each level of difficulty and each

imbalance level. As before, each data point indicates the performance of a single neural

network.

In Figure 3.5A, we see that, unlike in the classifiers, the easiest tasks have the highest

balanced accuracy and the most difficult tasks have lowest balanced accuracy in neural

network experiments without resampling. For the “Easy” and “Medium Easy” tasks, we

see that an increase in the imbalance level does not improve performance significantly,

especially from ρ = 0.1 to ρ = 0.2. For both the “Medium Hard” and “Most Difficult”

classification tasks, however, the increase in the imbalance level strongly correlates to

better classification performance, given by balanced accuracy.

When we use SMOTE resampling in our neural network, this pattern changes. As shown in

Figure 3.5B, instead of improving results with higher imbalance levels and for the “medium

hard” and “most difficult” tasks, SMOTE resampling decreases balanced accuracy. For

the “easy” and “medium easy” tasks, balanced accuracy improves significantly with higher

imbalance levels with resampling. However, even the highest balanced accuracy we achieve

with resampling at the ρ = 0.2 imbalance level is lower than the unresampled data at all

values of ρ.

This suggests that resampling data with relatively separable classes, such as the “easy”

and “medium easy” tasks, is detrimental to a neural network’s performance, regardless

of the imbalance level. For more difficult tasks, such as the “medium hard” and “most

difficult” tasks, resampling may be beneficial for low imbalance levels, particularly ρ ≤ 0.1.

Class Imbalance 35

Figure 3.5: Plot of balanced accuracy at different imbalance levels (ρ) for the four difficulty
settings with (A) no resampling and (B) SMOTE resampling. (C) provides a legend for
the difficulty levels shown.

Difficulty over All Imbalance Levels

To determine how these classifiers perform at each imbalance level from 0.1 to 1, we create

a function to calculate each classifier’s performance at each imbalance level. As in the

previous experiments, we use the same levels of difficulty, where each is two-dimensional:

• Most Difficult: X ∼ N(0, 1), Y ∼ N(1, 1),

• Medium Hard: X ∼ N(0, 1), Y ∼ N(2, 1),

• Medium Easy: X ∼ N(0, 1), Y ∼ N(3, 1),

• Easy: X ∼ N(0, 1), Y ∼ N(5, 1).

Class Imbalance 36

We show the results of this experiment in Figure 3.6. Note that each of Figure 3.6A-

Figure 3.6D have different y-axis scales, so the visualizations are not directly comparable

across the figure.

Figure 3.6: Visualizations of classifier performance for imbalance levels of 0.1 to 1 on
different generated datasets. (A) shows an easy case, (B) shows a medium easy case, (C)
shows a medium hard case, and (D) shows a hard case. (E) provides a legend for the
classifiers used in the experiments.

Notice that with the easy and medium easy cases, low imbalance levels produce significant

noise, indicating that classifiers are likely more sensitive to low imbalance levels on easily-

classifiable data distributions. For the medium hard and hard cases, on the other hand,

there is a little bit of noise initially using the Random Forest classifier on the medium

hard case, while there is no noise at low imbalance levels on the hard case.

We also notice that it becomes easier to distinguish between classifier performance at

Class Imbalance 37

higher imbalance levels for harder cases. In Figure 3.6C, Random Forest seems to consist-

ently perform slightly worse than Gaussian Naive Bayes and Gradient Boosting for higher

imbalance levels, i.e., ρ > 0.4. Similarly, in Figure 3.6D, the performance of Random

Forest levels off at a lower balanced accuracy than Gaussian Naive Bayes and Gradient

Boosting starting at approximately ρ > 0.4.

Simulation Study

We want to verify the results of the difficulty over all imbalance levels. To do so, we

generate many imbalanced datasets and conduct Random Forest, Gradient Boosting, and

Gaussian Naive Bayes Classification on each of them for each imbalance level. As in the

previous experiments throughout this chapter, we test the same four difficulty levels, where

each is two-dimensional:

• Most Difficult: X ∼ N(0, 1), Y ∼ N(1, 1),

• Medium Hard: X ∼ N(0, 1), Y ∼ N(2, 1),

• Medium Easy: X ∼ N(0, 1), Y ∼ N(3, 1),

• Easy: X ∼ N(0, 1), Y ∼ N(5, 1).

The results of this experiment are shown in Figure 3.7. Note that, as in Figure 3.6, each of

Figure 3.7A-Figure 3.7D have different y-axis scales, so the visualizations are not directly

comparable across the figure. We generate 100 datasets and use the three classifiers to

perform classification on each dataset. The shaded region outside of the lines for each

classifer in Figure 3.7 shows the balanced accuracy range for each of the 100 classification

attempts.

The results mimic those of the single generated dataset almost exactly. In general, the

classifiers all converge to the same balanced accuracy for each classification task difficulty.

In Figure 3.7A, the classifiers converge to 1 in balanced accuracy, in Figure 3.7B, this

value decreases to 0.975, both matching their respective parts in Figure 3.6. This trend

holds for Figure 3.7C and Figure 3.7D when compared to Figure 3.6 as well. The balanced

accuracy values to which each of these classifiers converge in each experimental setting

Class Imbalance 38

Figure 3.7: Visualizations of classifier performance for imbalance levels of 0 to 1 on 100
generated datasets at each imbalance levels. (A) shows an easy case, (B) shows a medium
easy case, (C) shows a medium hard case, and (D) shows a hard case. (E) provides a
legend for the classifiers used in the experiments.

decreases as the classification task becomes more difficult, as shown in Figure 3.6 as well.

This also shows that Gradient Boosting performs worse than Random Forest, particularly

for the more difficult classification tasks. As expected, the simulation shows more noise

with lower imbalance levels, particularly those for which 0 < ρ < 0.2, supporting the

conclusion made from Figure 3.6.

Conclusions

Evidently, imbalance level highly affects both classifier and neural network performance

in terms of balanced accuracy. The effects of this imbalance, however, depend on the

Class Imbalance 39

distribution of the data. For easily separable classes, not only is balanced accuracy higher

on average but it is also noisier for lower imbalance levels. For classes that are difficult

to separate, classifiers generally perform worse and imbalance level significantly impacts

performance. The simulation, where we generate 100 imbalanced datasets and perform

classification, confirms these results.

Additionally, SMOTE resampling only marginally improves results for easily separable

classes but improves results significantly for more difficult cases. Utilizing resampling

techniques, therefore, proves to be more useful in highly imbalanced datasets with low

separability.

Class Imbalance 40

Chapter 4

Imbalanced Data Classification

The goal of imbalanced data classification is to correctly identify labels based on features,

or data. The data we generated in the previous chapter was numerical, but we can also

predict labels using images as data. Recently, Convolutional Neural Networks (CNNs)

have gained popularity for their strong performance and low time complexity in image

classification tasks. This chapter first discusses the performance of a CNN on imbalanced

image data from the Intel Images dataset, where one image occurs much more often than

another, and then discusses classification of numerical data with the Kaggle Credit Cards

dataset.

4.1 Image Classification Background

In image classification, as in all classification tasks, we want to assign correct labels to

images. If we have a set of images containing cats and dogs, for instance, we want our

classifier to recognize images of cats as cats and images that are not of cats as not of cats.

With imbalanced data, there are many more images in one category than the other, and

the more images that are classified correctly, the better the classifier performs. We examine

this problem with the Intel Images dataset, described in Section 4.1.1, with experiments

using neural networks and classifiers, discussed in Section 4.2.1. Finally, the results and

analysis of the experiments are given and analyzed in Section 4.2.2, followed by a brief

discussion of these results in Section 4.2.3.

41

Figure 4.1: A random image from the Intel Images dataset that belongs to the “sea” class.

4.1.1 Intel Images Dataset

Throughout this chapter, we use the Intel Images dataset to test various CNN structures

(Bansal, 2019). This dataset has six classes: mountains (3037 images), sea (2784 images),

buildings (2628 images), glacier (2957 images), street (2883 images), and forest (2745

images). Figure 4.1 shows an example of what an image from the dataset may look like.

To make this a binary classification problem, we consider each possible combination of

these six classes, yielding fifteen possible combinations.

Some of these classification tasks, however, are more challenging than others due to per-

sistent similarities in images. Using Principal Component Analysis (PCA), we attempt

to determine which classification tasks are computationally difficult and which ones are

“easy.” By examining the PCA clusters, which roughly correspond to the image labels,

we can determine the computational difficulty of pairing each combination of labels. For

example, it is likely easier to achieve high balanced accuracy when classifying streets and

mountains, as there is little overlap between them on the two-dimensional PCA. Classify-

ing glaciers and mountains, however, is likely more difficult because the two-dimensional

PCA shows significant overlap between these labels.

We examine the PCA in higher dimensions to get an even better sense of the difficulty

of each problem. In Figure 4.2, we see that plotting different dimensions of the PCA in

Imbalanced Data Classification 42

Figure 4.2: The three-dimensional Principal Component Analysis of the images in the
Intel Images dataset can help determine whether classification will be easy or difficult.

three dimensions gives different impressions of the difficulty of each binary combination

of labels.

In Figure 4.2A and Figure 4.2C, we see four relatively separate classes. There, blue points

are mixed with the green and purple ones and orange points are mixed with red ones,

indicating difficulty in distinguishing mountain images from glacier and sea images, and

street images from building images, respectively. Figure Figure 4.2B shows separation

between the brown points and the rest of the points, showing relative separation between

forest images and the rest of the classes.

4.2 Image Data Experiments

We first discuss the results of the image data experiments using the Intel Images dataset,

providing an overview of our neural network structure and implementation, followed by

results and analysis of these experiments.

Imbalanced Data Classification 43

4.2.1 Experiment Structure

To test the performance of neural networks on the Intel Images dataset, we first need to

preprocess the data. Then, we can develop an experimental structure to use to test a

variety of techniques on this dataset.

Preprocessing

Although initially a multi-class, fairly balanced dataset, we modify the Intel Images dataset

to make it a binary, imbalanced dataset by examining two classes images at a time and

removing instances from one class to simulate imbalance.

As mentioned in Section 4.1.1, there are fifteen possible combinations of the six labels in

the dataset, and we can categorize each task as easy or difficult by observing the label

overlap in the PCA projection. Based on the PCA, however, we describe the predicted

difficulty as “medium” if the PCA shows it is easy in some dimensions and hard in others.

We omit these from our analysis, however, because we choose to examine only “easy” and

“hard” cases for simplicity in analysis and conclusions. We outline the combinations and

their predicted computational difficulty in Table 4.1.

We split the data into training and testing datasets using the premade splits in the Intel

Images dataset. The split is near 80% in the training set and 20% in the testing dataset

for each image class, but there is some variability between classes.

To prepare the images for training, we first convert the images from the BGR color space

to the RBG color space, allowing us to visualize the images with the matplotlib package,

a popular data and image visualization package. We then resize the images to a set size,

150× 150 pixels.

Finally, we have to artificially make the Intel Images dataset imbalanced by removing

some instances from one class to make it the minority class. We can tune the imbalance

parameter, which determines which proportion of observations to keep in the positive

class, to determine the level of imbalance in the dataset. Note that we have to remove

observations from the desired class in both the training and testing datasets to simulate

Imbalanced Data Classification 44

Majority Class Minority Class Predicted Difficulty
Mountain Street Easy
Mountain Building Easy
Street Glacier Easy
Street Sea Easy
Glacier Building Easy
Mountain Glacier Hard
Mountain Sea Hard
Street Building Hard
Glacier Sea Hard
Mountain Forest Medium
Street Forest Medium
Glacier Forest Medium
Building Sea Medium
Building Forest Medium
Sea Forest Medium

Table 4.1: We use the PCA from Figure 4.2 to predict the classification difficulty of two
given labels. We determine the classification difficulty for the fifteen possible combinations
of the six labels in the Intel Images dataset.

Image Class Prop. in Training Set
Mountain 0.83
Street 0.83
Glacier 0.81
Buildings 0.82

Sea 0.82
Forest 0.83

Table 4.2: The proportion of images in the training class is approximately 80% for each
image, though there is some variation in each split.

a real-world imbalanced dataset that has few observations in the testing dataset. We

use ρ = 0.10 as our imbalance level in the experiments discussed in Section 4.2.2 and

Section 4.2.2 for each combination of image classes.

Theoretically, if we flip the majority and minority classes, the balanced accuracy we achieve

should not change significantly. In other words, changing which is the minority class and

which is the majority class in each binary combination of classes should not change a

classifier’s ability to separate classes. If the classes are easily separable, the classifier

should be able to achieve high balanced accuracy whether it has many observations or few

Imbalanced Data Classification 45

observations. Likewise, having many observations or few observations in two classes in a

difficult classification problem does not change the predicted difficulty of the problem.

Neural Network Structure

We use the keras package, an easy and efficient framework for building neural networks,

to create our models. In this process, we first define our model architecture, compile our

model, train the model with the training dataset, and evaluate its performance on the

testing dataset.

When we define our model architecture, we must define it as being Sequential(), or a lin-

ear stack of layers, and then add the layers we want. Our model will use convolutional lay-

ers, max pooling layers, a flattening layer, and fully-connected layers. Here, each layer can

be added to the model with a call to model.add() that contains the desired layer type. If

we want to add a convolutional layer, for instance, we write model.add(Convolution2D).

In each layer, there are parameters we can, or must, add, including dimensionality para-

meters and activation functions.

We use a sequential, seven-layer neural network structure: a convolutional layer, a max

pooling layer, a convolutional layer, a max pooling layer, a flattening layer, and two fully-

connected layers, motivated by model tuning and models in the literature. Table 4.3

shows the structure of the CNN used in these experiments. Using an Adam optimizer and

a sparse categorical cross-entropy loss function, appropriate for integer target labels, we

can evaluate our model’s performance on the test dataset. Note that we run our model

with a batch size of 128, use 20 epochs, and use a 0.2 validation split and that these

hyperparameter choices are the result of hyperparameter tuning.

4.2.2 Results

In this section, we compare the results of easy and hard classification problems based on

the three-dimensional PCA projection. Using the neural network structure described in

Section 4.2.1, we classify the sets of images in our testing dataset after training our model.

Imbalanced Data Classification 46

Layer Width Height Depth
Input 150 150 3

Convolution + ReLU 148 148 32
Max Pooling 74 74 32

Convolution + ReLU 72 72 32
Max Pooling 36 36 32
Flattening 1 1 41472

Fully-connected + ReLU 1 1 128
Fully-connected + Softmax 1 1 6

Table 4.3: Structure of the CNN in the Intel Images experiments.

Easy Classification Problem

Based on the three-dimensional PCA projection analysis, Table 4.1 shows that we have

five classification tasks we predict will be easy.

As shown in Table 4.4, our neural network performs well on each of our predicted easy

classification tasks. We achieve 89.2% balanced accuracy, on average. Classifying streets

and sea seems to be the easiest, as our model achieves 92.2% balanced accuracy on that

task. The model has trouble classifying glaciers and buildings, given that this is an easy

task, however, as it achieves only 83.9% balanced accuracy here.

Labels Balanced Accuracy
Mountain vs. Street* 0.919

Mountain vs. Building* 0.872
Street vs. Glacier* 0.908
Street vs. Sea* 0.922

Glacier vs. Building* 0.839

Table 4.4: The model performs as expected on easy classification tasks, achieving high
balanced accuracy on each of our theoretically easy classifications. Note that the asterisk
indicates that the label represents the minority class.

Intuitively, the model’s strong performance on these tasks makes sense because pictures

of these scenes lack overlap in each binary classification problem. In other words, there

are likely no big buildings near glaciers, so it is easy for our model to learn the difference

between these objects.

Imbalanced Data Classification 47

Hard Classification Problem

Table 4.1 shows four theoretically difficult classification tasks. The model should perform

worse on these classification tasks that it did for the easy ones shown in Section 4.2.2.

Table 4.5 shows this is indeed true. We achieve an average balanced accuracy of only

68.3%, which is about 20% worse than that of the easy tasks. Here, the model is best at

classifying streets and buildings with a balanced accuracy of 71.8% and worst at classifying

glaciers and sea with a balanced accuracy of 66.5%.

Labels Balanced Accuracy
Mountain vs. Glacier* 0.666
Mountain vs. Sea* 0.682
Glacier vs. Sea* 0.665

Street vs. Building* 0.718

Table 4.5: The model performs much worse on the theoretically difficult classification
tasks.

Again, the difficulty of these tasks makes sense intuitively because of the overlap in these

objects. Pictures of streets likely include buildings, for instance, so the model struggles to

differentiate between these.

Changing Imbalance Levels

To better understand the effects of imbalance on performance on a real-world dataset,

we change the imbalance levels on the Intel Images dataset. We change the imbalance

level for both the easy and hard experiments using the neural network structure described

in Section 4.2.1. By testing imbalance levels of ρ = 0.05 and ρ = 0.2, we can compare

these values to our initial imbalance level of ρ = 0.1 used in experiments described in

Section 4.2.2 and Section 4.2.2.

We show the average balanced accuracy of each experimental setting in Table 4.6 and the

breakdown of the impact of each imbalance level in Figure 4.3.

Based on the results of these experiments, the average balanced accuracy of hard classific-

Imbalanced Data Classification 48

Abbreviation Experimental Setting Difficulty Average
Balanced Acc.

MO + ST Mountain and Street* Easy 0.906
MO + BU Mountain and Building* Easy 0.821
ST + GL Street and Glacier* Easy 0.894
ST + SE Street and Sea* Easy 0.907
GL + BU Glacier and Building* Easy 0.812
MO + GL Mountain and Glacier* Hard 0.654
MO + SE Mountain and Sea* Hard 0.667
GL + SE Glacier and Sea* Hard 0.702
ST + BU Street and Building* Hard 0.717

Table 4.6: Average balanced accuracy for both easy and hard experimental settings. We
include the abbreviations for reference in Figure 4.3. As before, the class with the asterisk
is the minority class.

Figure 4.3: Intel Images binary classification performance for imbalance levels of ρ =
0.05, ρ = 0.1, ρ = 0.2.

ation tasks in the Intel Images dataset is 0.685, 26.7% lower than that of easy classification

tasks, which have an average balanced accuracy of 0.868 for the dataset.

Imbalanced Data Classification 49

Specifically, according to Figure 4.3, we see that higher values of ρ correspond to higher

balanced accuracy for all experimental settings. This means that more balanced datasets

are easier for the neural network to classify. For the settings described as “easy,” the gap

between ρ = 0.05 and ρ = 0.1 was generally larger than that between ρ = 0.1 and ρ = 0.2,

indicating that lower imbalance levels, i.e., lower values of ρ, have a stronger impact on

classification performance. Due to the lack of a similar trend in the “hard” experiments,

the difficulty of the classification task may offset the difficulty of lower imbalance levels.

4.2.3 Conclusions

The Intel Images dataset shows that CNNs perform worse on harder classification tasks

than easy classification tasks, supporting the results from the neural network experiments

with generated data from Chapter 3. Unlike the synthetic datasets, however, neural

networks consistently perform better with higher imbalance levels on the Intel Images

dataset, which supports the idea that higher imbalance levels make classification tasks

easier.

4.3 Numerical Data Experiments

Now, we discuss classifier experiments with a real-world numerical dataset: the Kaggle

Credit Card Fraud dataset. This dataset contains information about the validity of credit

card transactions in Europe, where 492 out of 284,807 transactions, or 0.172% of trans-

actions, are fraudulent (Credit Card Fraud Detection n.d.). The initial imbalance level in

the dataset is ρ ≈ 0.002, but we modify the imbalance level artificially in our experiments

by removing instances from the negative class.

4.3.1 Experiment Structure

In these experiments, we use three classifiers to determine the validity of transactions:

Gradient Boosting, Random Forest, and Gaussian Naive Bayes. As in previous experi-

ments, we use a 70-30 train-test split for each experiment. Ultimately, our goal in these

Imbalanced Data Classification 50

experiments is to compare the classification results of a real numerical dataset to those of

our generated dataset from Chapter 3.

We perform three experiments to thoroughly compare these results. In all three experi-

ments, we test the same three classifiers: Gradient Boosting, Random Forest, and Gaussian

Naive Bayes. First, we test the performance of the classifiers with data at three imbalance

levels (ρ = 0.05, 0.01, 0.2), both with SMOTE resampling and without any resampling.

Next, we compare classifier performance over imbalance levels from 0.1 to 1. Finally, to

test the robustness of these results, we perform classification with each classifier 100 times

at each imbalance level.

Note that, because this is a real dataset, we don’t know how “hard” or “easy” the classi-

fication task is. Using the results of these experiments, however, we may be able to infer

the difficulty, which can inform which techniques may be appropriate to improve results.

4.3.2 Results

In our first experiment, we test classifier performance on the Kaggle Credit Cards dataset

with imbalance levels of ρ = 0.05, 0.1, and 0.2 with no resampling and with SMOTE

resampling. The results are shown in Figure 4.4.

As evident in Figure 4.4, resampling doesn’t affect performance significantly, especially at

higher imbalance levels. We also note that higher imbalance levels improve performance

for all classifiers, both with and without resampling. Gradient Boosting and Random

Forest classifiers consistently perform best, while Gaussian Naive Bayes performs worse at

all imbalance levels, regardless of resampling.

When we test classifier performance over all imbalance levels, shown in Figure 4.5, Gradient

Boosting better than both Random Forest and Gaussian Naive Bayes in general. Still,

the balanced accuracy increases quickly for 0 < ρ < 0.2, and even at these low imbalance

levels, all classifiers achieve balanced accuracy of 95% or more. As the imbalance level

approaches 1, the balanced accuracy also converges to 1 for all classifiers.

These results are reinforced in the simulation, where each point in Figure 4.6 represents

Imbalanced Data Classification 51

Figure 4.4: Classifier Performance on the Kaggle Credit Cards data with no resampling
(left) and with SMOTE resampling (right) for imbalance levels of ρ = 0.05, 0.1, 0.2.

Figure 4.5: Classifier Performance on the Kaggle Credit Cards data over imbalance levels
from 0 to 1. Note that no resampling is used.

classification attempted 100 times by the respective classifier. Again, balanced accuracy

converges to 1 as the imbalance level approaches 1, and the worst performance for all

classifiers occurs for imbalance levels such that 0 < ρ < 0.2. Unlike in the single-attempt

classification shown in Figure 4.5, Gaussian Naive Bayes performs best in the simulation.

Imbalanced Data Classification 52

Figure 4.6: Classifier Performance on the Kaggle Credit Cards data over imbalance levels
from 0 to 1 for N = 100 classification attempts for each classifier. Note that no resampling
is used.

Comparison to Generated Data Results

The Kaggle Credit Cards experiments behave similarly to the generated data experiments,

particularly for the easy case in the generated data, where X ∼ N(0, 1) and Y ∼ N(5, 1).

In both, we see that balanced accuracy increases rapidly, converging to 1 after slightly

lower balanced accuracy for imbalance levels where 0 < ρ < 0.2. Even at these lower

imbalance levels, however, both achieve over 95% balanced accuracy in both the individual

classification experiments and the simulated experiment, indicating that the Kaggle Credit

Cards data is likely relatively easy to classify based on the features provided.

4.3.3 Conclusions

The Kaggle Credit Cards data confirms the trends shown in the generated data experi-

ments in Chapter 3. It seems that most classifiers perform well on easy classification tasks,

like this one, even when the imbalance level is extremely low, making classification more

difficult.

Imbalanced Data Classification 53

Chapter 5

Loss Function Development

One method of promoting better performance when training neural networks on imbal-

anced data involves modifying how the models determine loss. This is known as loss

function development or loss function engineering (Johnson and Khoshgoftaar, 2019).

This algorithm-level method uses theoretical ideas to modify canonical loss functions in

ways that allow the minority class to contribute more to the loss, minimizing incorrectly-

classified minority instances (Janocha and Czarnecki, 2017).

Traditionally, neural network loss functions are often cross-entropy loss functions. Gener-

ally, Cross-Entropy (CE) is defined as

CE = −
C∑
c=1

yi,c log(pi,c),

where C represents the number of possible classes, yi,c is a binary variable to represent

whether the label c is correct for observation i, and pi,c is the predicted probability that

observation i is in class c. This form is often used for multi-class classification problems,

but we are interested in binary classification problems.

For a binary classification problem, we can simplify the CE loss and define Binary Cross-

Entropy (BCE) as follows:

BCE = −(yi log(pi) + (1− yi) log(1− pi)).

It is clear that the standard BCE loss function weighs both the majority and minority

classes equally. Because the cost of misclassifying a minority class instance is much higher

54

than misclassifying a majority class instance when dealing with imbalanced data, this loss

function can be detrimental to model performance.

5.1 Loss Functions

Although relatively little research on loss function engineering exists, we discuss four

loss functions aimed at improving classification of imbalanced datasets. We discuss the

theoretical development of these loss functions and how they improve classification.

5.1.1 Focal Loss

The Focal Loss function is typically used in object detection problems, where negative

background examples outnumber positive foreground examples. This loss function com-

bats this issue by reshaping the standard CE loss function to reduce the burden of easily

classified instances (Johnson and Khoshgoftaar, 2019; Lin et al., 2017).

This loss function multiplies the CE loss by a parameter αi(1 − pi)γ, where αi ≥ 0 is a

weight to increase the importance of the minority class and γ adjusts the rate at which

easily classified instances are downweighted (Johnson and Khoshgoftaar, 2019). The loss

function is then given by

FL = −αi(1− pi)γ log(pi).

By focusing learning on difficult minority class instances, Focal Loss improves both speed

and accuracy compared to the standard CE loss function it is built upon (Lin et al., 2017).

5.1.2 Label-Distribution-Aware Margin (LDAM) Loss

This loss function manipulates the margins of the training instances. The loss function

pushes the boundary separating the classes towards the majority class, allowing more

room for generalization error around the minority class, as shown in Figure 5.1 (Cao et

al., 2019). In other words, by pushing the class separation boundary towards the majority

class, LDAM allows more room for what would be misclassified minority class instances

under a typical, equidistant margin.

Loss Function Development 55

Figure 5.1: LDAM pushes the margin away from the minority class (green circles) and
towards the majority class (blue X’s) (Cao et al., 2019, Figure 1).

The loss is defined as

L = max(max
j 6=y
{zj} − zy + ∆y, 0),

where ∆j = C

n
1/4
j

, for j ∈ {1, . . . , k}. Note that ∆j represents the trade-off between class

margins (Cao et al., 2019).

5.1.3 Gradient Harmonizing Mechanism (GHM) Loss

Classification methods often perform poorly when faced with a disparity in the number of

positive and negative instances or in the number of easily-classified and hard to classify

instances. The effects of these problems can be captured by the gradient norm distribution

(B. Li, Y. Liu and X. Wang, 2019).

Suppose we have an imbalanced dataset. Then we know that the negative instances in the

dataset are generally easy for a neural network or classifier to classify. These instances

don’t contribute significantly to the model because they are easily classifiable, meaning

they produce a small magnitude of gradient. Positive instances, on the other hand, are

much more difficult to classify, so they correspond to large magnitudes of gradient.

Loss Function Development 56

Although negative instances have small gradients that contribute little to the global gradi-

ent, the high amount of these easily classified points overwhelm neural networks. This

disparity overwhelms the minority class, making the training process inefficient (B. Li, Y.

Liu and X. Wang, 2019).

The Gradient Harmonizing Mechanism (GHM) loss improves the training process by cal-

culating loss on instances with similar gradient densities and subsequently attaches a

harmonizing parameter to the gradient of each instance according to its density (B. Li,

Y. Liu and X. Wang, 2019). GHM loss is defined as follows:

LGHM = 1
N

N∑
1
βiLCE(pi, p∗i).

5.1.4 Mean False Error (MFE)

Instead of focusing on the cross-entropy loss function, the traditional Mean Squared Error

(MSE) loss function performs poorly with imbalanced data (S. Wang et al., 2016). The

MSE loss function compares true values, y, and predicted values, ŷ, as follows:

L(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2.

Instead, Mean Squared False Error (MSFE) and Mean False Error (MFE) are both more

sensitive to the minority class, improving the loss function’s classification potential for

imbalanced data (S. Wang et al., 2016). By splitting the MSE into two components, mean

false positive error (FPE) and mean false negative error (FNE), and recombining them

into the total loss (MFE), the loss function becomes particularly sensitive to the minority

class. We define FPE and FNE below:

FPE = 1
N

N∑
i=1

∑
n

1
2(y − ŷn)2

FNE = 1
P

P∑
i=1

∑
n

1
2(y − ŷn)2

Loss Function Development 57

Note that N and P represent the number of instances in the negative and positive classes,

respectively. To get the MFE, we simply sum these components,

MFE = FPE + FNE,

and take the sum of the squared values to get the MSFE:

MSFE = FPE2 + FNE2.

Note that the implementation of this function is not shown, but we use this to show that

state-of-the-art loss functions are not only based on cross-entropy loss. This one, like some

others, is based on Mean Square Error (MSE).

5.2 Methods

Our goal is to test these loss functions on the Kaggle Credit Cards dataset and compare

their performance to that of the standard cross entropy loss function used in previous

experiments. To do so, however, we use a different neural network module in Python

called Pytorch to simplify this process (Pytorch n.d.). We discuss the data as well as the

neural network structure and implementation of these loss functions using Pytorch.

5.2.1 Dataset

As described in earlier chapters, the Kaggle Credit Cards dataset contains information

about the validity of credit card transactions. The dataset contains information from

European card transactions, where 492 out of 284,807, or 0.172%, are fraudulent (Credit

Card Fraud Detection n.d.). We use a 70-30 train-test split, and we use the StandardScaler()

from the Sci-kit learn module to standardize the data (Pedregosa et al., 2011).

Loss Function Development 58

5.2.2 Neural Network

We create an Artificial Neural Network (ANN) to test the loss functions. To determine

the optimal neural network structure and hyperparameters, we test several combinations

of layers and hyperparameters.

As in previous experiments, we only use a ReLU activation function. The layers, however,

include Dense, Batch Normalization, and Dropout layers, which have not been discussed.

In each layer, we specify the number of inputs and outputs in the layer, and the number

of outputs is then used as the input in the following layer. We elaborate on the use of the

layers below.

Dense Layer

In dense layers, all the nodes are connected to the nodes of the previous layer. These layers

each apply a linear transformation to the data such that y = x · wT + b. Here, the size

of the vector y and x equate to the output dimension and input dimension, respectively

(Pytorch n.d.).

Batch Normalization Layer

Batch normalization essentially allows us to normalize layer inputs. This both improves

training speed of the ANN and its performance. Contrary to standard normalization

layers, batch normalization refers to the grouping of data into batches, or smaller parts of

the original dataset (Ioffe and Szegedy, 2015).

Dropout

Dropout prevents the ANN from considering certain nodes during training on a particular

forward or backward pass. Specifically, nodes are excluded at a certain probability 1− p,

where p is specified in the call to a dropout layer. These layers improve the ANN’s

performance by avoiding overfitting to the training data (Budhiraja, 2018).

Loss Function Development 59

Structure

Using these layers, we implement the structure below in the specified order. The number

of hidden nodes is kept constant at 50, shown in the input and output dimensions for each

layer in Table 5.1. We use a learning rate of 10−4, run the ANN for 100 epochs, and use

a batch size of 16.

Layer Input Dimension Output Dimension
Dense + ReLU 30 50

Batch Normalization (1D) 50 50
Dense + ReLU 50 50

Batch Normalization (1D) 50 50
Dropout (p = 0.3) 50 50

Dense 50 1

Table 5.1: Structure of the neural network in the Kaggle Credit Card experiments.

5.2.3 Implementation

Using Pytorch, we can embed our custom loss functions into the training function by

changing our criterion. If we use a standard loss function, we can simply call it from

the Pytorch neural network module, which we import with the import torch.nn as nn

command, as follows: criterion = nn.CrossEntropyLoss(). For new, modified loss

functions, we instead call our pre-defined function. For the Focal Loss Function, defined

as FocalLoss, for instance, our criterion changes to criterion = FocalLoss().

The basic process of implementing neural networks in Pytorch is shown in Figure 5.2. We

first define our neural network with the layers specified in Table 5.1. Then, we define our

loss function by modifying the criterion, as discussed above. After training our model

over 100 epochs, we test our model and calculate its balanced accuracy.

We use Pytorch to implement the layers discussed in Table 5.1. The commands for each

respective layer are shown in Table 5.2. Note that the dimension arguments in each layer

depend on the amount of nodes in previous layers, or their dimension.

Loss Function Development 60

Figure 5.2: Process of creating a neural network structure for these experiments.

Layer or Transformation Implementation
Dense nn.Linear(input_dim, output_dim)
ReLU nn.ReLU()

Batch Normalization nn.BatchNorm1d(hidden_nodes)
Dropout nn.Dropout(p)

Table 5.2: Pytorch implementation of the layers used in experiments.

Loss Functions

We also use Pytorch to implement each of our loss functions. In each loss function class,

we have an __init__() and a forward() function. The former allows us to initialize

necessary parameters and objects used to calculate loss, while the latter computes the loss

for a pass of data.

5.3 Results

We see radically different performance in the different loss functions used in the ANNs.

Binary Cross Entropy (BCE), our experimental control, performs similarly to Gradient

Harmonized (GHM) Loss, as each achieve a relatively high balanced accuracy on the

test set. BCE achieves the highest balanced accuracy of 0.831 and GHM achieves a

balanced accuracy of 0.634. Focal Loss and Label-Distribution-Aware Margin (LDAM)

Loss Function Development 61

Loss, however, perform significantly worse, with balanced accuracy of 0.249 and 0.289 on

the test set, respectively. The results of the experiments in the neural networks are shown

in Table 5.3.

Loss Function Balanced Accuracy
Binary Cross Entropy Loss 0.831

Focal Loss 0.249
Gradient Harmonized Loss 0.634

Label-Distribution-Aware Margin Loss 0.289

Table 5.3: ANN performance on the test set using different loss functions.

Although all the loss functions shown above are based on Binary Cross Entropy, the

original loss function performs significantly better than its variations. Because both Focal

Loss and LDAM Loss both use geometric-based approaches to improving classification in

imbalanced data, it seems that these approaches may not be beneficial with the Kaggle

Credit Cards data. GHM, on the other hand, uses the gradient densities of observations.

It is possible that class separation is difficult for the two geometric methods to detect,

making GHM perform favorably in comparison.

5.4 Conclusions

Although BCE fails to account for class imbalance, it performs better when in an ANN

trained on the Kaggle Credit Cards dataset than our three state-of-the-art loss functions

of interest: GHM, LDAM, and Focal Loss. It’s possible that Focal Loss and LDAM

perform significantly worse than BCE and GHM because they take a geometric approach

to classifying imbalanced data, which may not work well for this data.

In the future, it may be interesting to test these loss functions on different datasets and

manipulate the imbalance levels of the datasets to determine whether there are patterns

in their performance.

Loss Function Development 62

Chapter 6

Conclusion

In recent years, classifiers and neural networks have been shown to perform well on classific-

ation tasks involving a wide variety of data types. When attempting to classify imbalanced

data, where the number of instances in one class significantly exceeds that of the other,

these techniques perform poorly, misclassifying the majority of positive class instances

because they optimize for accuracy.

As a result, the accuracy performance metric can be misleading, so we consider balanced

accuracy, a measure of accuracy weighting the positive and negative classes equally. To

determine the amount of imbalance in a dataset and understand its effects, we use the

imbalance parameter ρ, defined as ρ = mp
mn

, or the ratio of positive to negative instances

in the dataset.

To better understand the effects of imbalance levels on classification, we generate syn-

thetic data with differing class separability, which impacts the difficulty of classification.

When we test the performance of neural networks on these datasets at imbalance levels

of ρ = 0.05, 0.1, and 0.2, we see that SMOTE resampling doesn’t improve performance.

Increasing the imbalance level improved performance for “medium hard” and “hard” clas-

sification tasks but not for “medium easy” and “easy” classification tasks.

Generalizing this to all imbalance levels and testing classifiers on this data, we see that

balanced accuracy is lower and fluctuates most for 0 < ρ < 0.2, after which all the

classifiers converge to a certain balanced accuracy value. For harder classification tasks,

this final balanced accuracy value was lower than that of easy tasks, and the convergence

63

over imbalance levels occurred more slowly in classification for harder tasks. Simulated

results for 100 classification attempts at each imbalance level support this conclusion.

In real-world datasets, we can use PCA to determine difficulty of classification tasks.

When we use neural networks to classify combinations of labels, both easy and hard tasks,

with the Intel Images dataset, we see that classifiers achieve a higher balanced accuracy

on easy tasks than hard tasks on average. These CNNs consistently performed best on

higher imbalance levels, as expected.

Our numerical data experiments using the Kaggle Credit Cards dataset also support this

conclusion. Like in the generated data experiments, SMOTE resampling had no effect on

classifier performance, and the simulation of 100 classification attempts at each imbalance

level from 0.01 to 1 reinforce our conclusion.

Typically, neural networks minimize loss functions that encourage accuracy maximization,

not weighting the minority class more heavily to account for the dearth of instances in

the class. Some state-of-the-art loss functions attempt to account for this deficiency in

standard loss functions, like BCE. When we classify the Kaggle Credit Cards data with

these loss functions, however, none of them perform as well as BCE. The two loss functions

with significantly worse performance, LDAM and FL, both use geometric interpretations

of class imbalance, which may not be appropriate for this dataset.

We have shown that higher imbalance levels improve classifier and neural network per-

formance on imbalanced data for harder classification tasks more than they do for easier

classification tasks. For these harder tasks, SMOTE resampling will likely improve results

by a large margin with classifiers, but resampling may not improve results with neural net-

works as significantly. Modifying loss functions in neural networks may improve results,

but this likely depends on the dataset and the difficulty of the classification task.

Conclusion 64

Corrections

May 17, 2021

1. Fixed minor spelling and typographical errors throughout the thesis.

2. Changed the order of contents on the title page to follow the Amherst College Thesis Guidelines.

3. Added “and Artificial Neural Networks (ANNs)” to the third paragraph of the introduction.

4. Included “classification using numerical data with ANNs” in the last paragraph of the introduction.

5. Switched the order of “bagging” and “Bootstrap aggregation, or bagging” (Section 2.1.1, page 7).

6. Changed Tb to Tk in the description of the Random Forest Algorithm, changed “random forest tree” to
“decision tree” in step two, and removed “terminal” from the description of node in step two (Section
2.1.2, page 8).

7. Changed subtraction to addition in the definition of a binary classifier threshold function (Section 2.2,
page 12).

8. Removed the last four sentences of the Backpropogation section and added, “We can then use gradient
descent, discussed in detail in Section 2.1.3, to minimize the cost, or loss, function” (Section 2.2.1,
page 13).

9. Added the following sentence: “This also shows that Gradient Boosting performs worse than Random
Forest, particularly for the more difficult classification tasks” (Section 3.5.5, page 40).

References

Adam— latest trends in deep learning optimization (n.d.). https://towardsdatascience.
com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c. Ac-
cessed: 2021-04-08 (cit. on p. 17).

Bansal, Puneet (Jan. 2019). Intel Image Classification. url: https://www.kaggle.com/
puneet6060/intel-image-classification (cit. on p. 42).

Breiman, Leo et al. (2001). ‘Statistical modeling: The two cultures (with comments and a
rejoinder by the author)’. In: Statistical science 16.3, pp. 199–231 (cit. on p. 7).

Budhiraja, Amar (Mar. 2018). Learning Less to Learn Better-Dropout in (Deep) Ma-
chine learning. url: https://medium.com/@amarbudhiraja/https- medium- com-
amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-
learning-74334da4bfc5 (cit. on p. 59).

Cao, Kaidi et al. (2019). ‘Learning imbalanced datasets with label-distribution-aware mar-
gin loss’. In: arXiv preprint arXiv:1906.07413 (cit. on pp. 55, 56, 109).

Chawla, Nitesh V et al. (2002). ‘SMOTE: synthetic minority over-sampling technique’. In:
Journal of artificial intelligence research 16, pp. 321–357 (cit. on p. 22).

Credit Card Fraud Detection (n.d.). url: https://www.kaggle.com/mlg-ulb/creditcardfraud
(cit. on pp. 19, 50, 58).

Efron, Bradley and Trevor Hastie (2016). Computer Age Statistical Inference: Algorithms,
Evidence, and Data Science. 1st. USA: Cambridge University Press. isbn: 1107149894
(cit. on pp. 11, 13).

Gayathri, BM and CP Sumathi (2016). ‘An automated technique using Gaussian naıve
Bayes classifier to classify breast cancer’. In: International Journal of Computer Applic-
ations 148.6, pp. 16–21 (cit. on pp. 6, 7).

Greenwell, Bradley Boehmke amp; Brandon (Feb. 2020). Hands-On Machine Learning
with R. url: https://bradleyboehmke.github.io/HOML/gbm.html (cit. on pp. 9,
10).

Hastie, Trevor, Robert Tibshirani and Jerome Friedman (2009). The elements of statistical
learning: data mining, inference and prediction. 2nd ed. Springer. url: http://www-
stat.stanford.edu/~tibs/ElemStatLearn/ (cit. on p. 8).

65

https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/puneet6060/intel-image-classification
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://bradleyboehmke.github.io/HOML/gbm.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Ioffe, Sergey and Christian Szegedy (2015). ‘Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift’. In: International conference on ma-
chine learning. PMLR, pp. 448–456 (cit. on p. 59).

Janocha, Katarzyna and Wojciech Marian Czarnecki (2017). ‘On loss functions for deep
neural networks in classification’. In: arXiv preprint arXiv:1702.05659 (cit. on p. 54).

Johnson, Justin M and Taghi M Khoshgoftaar (2019). ‘Survey on deep learning with class
imbalance’. In: Journal of Big Data 6.1, p. 27 (cit. on pp. 6, 19, 21–23, 25, 54, 55).

Krawczyk, Bartosz (2016). ‘Learning from imbalanced data: open challenges and future
directions’. In: Progress in Artificial Intelligence 5.4, pp. 221–232 (cit. on pp. 20, 21).

Li, Buyu, Yu Liu and Xiaogang Wang (2019). ‘Gradient harmonized single-stage detector’.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01, pp. 8577–
8584 (cit. on pp. 56, 57, 107).

Li, Fei-Fei (2018). Convolutional Neural Networks (CNNs/ConvNets). url: %7Bhttps:
//cs231n.github.io/convolutional-networks/%7D (cit. on pp. 15, 16).

Liaw, Andy, Matthew Wiener et al. (2002). ‘Classification and regression by random-
Forest’. In: R news 2.3, pp. 18–22 (cit. on p. 8).

Lin, Tsung-Yi et al. (2017). ‘Focal loss for dense object detection’. In: Proceedings of the
IEEE international conference on computer vision, pp. 2980–2988 (cit. on pp. 55, 106).

Ling, Charles X and Victor S Sheng (2008). Cost-sensitive learning and the class imbalance
problem (cit. on pp. 22, 23).

Liu, Weibo et al. (2017). ‘A survey of deep neural network architectures and their applic-
ations’. In: Neurocomputing 234, pp. 11–26 (cit. on p. 15).

Luque, Amalia et al. (2019). ‘The impact of class imbalance in classification performance
metrics based on the binary confusion matrix’. In: Pattern Recognition 91, pp. 216–231
(cit. on p. 28).

Nielsen, Michael A (2015). Neural networks and deep learning. Vol. 2018. Determination
press San Francisco, CA (cit. on pp. 11, 12).

Nwankpa, Chigozie et al. (2018). ‘Activation functions: Comparison of trends in practice
and research for deep learning’. In: arXiv preprint arXiv:1811.03378 (cit. on p. 12).

Pedregosa, F. et al. (2011). ‘Scikit-learn: Machine Learning in Python’. In: Journal of
Machine Learning Research 12, pp. 2825–2830 (cit. on pp. 6, 58).

Pytorch (n.d.). pytorch.org. Accessed: 2021-03-23 (cit. on pp. 58, 59).

Skansi, Sandro (2018). Introduction to Deep Learning - From Logical Calculus to Artificial
Intelligence. Undergraduate Topics in Computer Science. Springer. isbn: 978-3-319-

REFERENCES 66

%7Bhttps://cs231n.github.io/convolutional-networks/%7D
%7Bhttps://cs231n.github.io/convolutional-networks/%7D
pytorch.org

73003-5. doi: 10.1007/978-3-319-73004-2. url: https://doi.org/10.1007/978-
3-319-73004-2 (cit. on pp. 12–15).

Velickovic, Petar (2017). ‘How to get a neural network to do what you want?’ University
Lecture (cit. on pp. 16, 17).

Wang, Shoujin et al. (2016). ‘Training deep neural networks on imbalanced data sets’. In:
2016 international joint conference on neural networks (IJCNN). IEEE, pp. 4368–4374
(cit. on p. 57).

Weaver, Cliff (Aug. 2017). url: http://rismyhammer.com/ml/keras.html (cit. on
p. 16).

Weiss, Gary M (2004). ‘Mining with rarity: a unifying framework’. In: ACM Sigkdd Ex-
plorations Newsletter 6.1, pp. 7–19 (cit. on p. 22).

Zwitter, M and M Soklic (1998). ‘This breast cancer domain was obtained from the Uni-
versity Medical Centre’. In: Institute of Oncology, Ljubljana, Yugoslavia (cit. on p. 23).

REFERENCES 67

https://doi.org/10.1007/978-3-319-73004-2
https://doi.org/10.1007/978-3-319-73004-2
https://doi.org/10.1007/978-3-319-73004-2
http://rismyhammer.com/ml/keras.html

REFERENCES 68

Appendix A
Synthetic data

This section shows the code used for experiments involving synthetic data. Note that the
code for all the experiments shown below, as well as all the code for other experiments, is
available on Github at https://github.com/Amherst-Statistics/Boskovic-Andrea-Thesis.

A.1 Synthetic Data Classification
These scripts show both the synthetic data generator function code and sample experi-
ments for classifiers (Section A.1.1) and neural networks (Section A.1.2). We also include
scripts used to make figures to visualize results for both classifier and neural network
experiments.

A.1.1 Synthetic Data Test: Classifiers
The data generation function is shown below in lines 22-66, followed by an example clas-
sification experiment where we use the following parameters:

• n_pos = 100

• n_neg = 2000

• n_features = 2

• n_inf_features = 2

• sd = 1

• class1_mean = 5.

Note that these values can be changed to create any type of imbalanced dataset. Using
this dataset defined in line 69, we create a training and testing set both with and without
SMOTE resampling. Finally, we test the performance of Gradient Boosting, Random
Forest, and Gaussian Naive Bayes on each of these datasets. In line 122, we also display
the code to create Figure 3.3 (the hard case) and Figure 3.2 (the easy case).

1 ##### Import packages #####
2

3 # Data wrangling
4 import random
5 import math

69

https://github.com/Amherst-Statistics/Boskovic-Andrea-Thesis

6 import numpy as np
7 import pandas as pd
8

9 # Plotting
10 import seaborn as sns
11 import matplotlib . pyplot as plt
12 import scipy.stats as stats
13

14 # Testing function
15 from sklearn . ensemble import GradientBoostingClassifier
16 from sklearn . ensemble import RandomForestClassifier
17 from sklearn . naive_bayes import GaussianNB
18 from imblearn . over_sampling import SMOTE
19 from sklearn . metrics import balanced_accuracy_score ,

classification_report
20 from sklearn . model_selection import train_test_split
21

22 def imbalanced_data_generator (n_pos ,
23 n_neg ,
24 n_features ,
25 n_inf_features ,
26 sd ,
27 class1_mean):
28 """ Imbalanced Data Generator
29

30 Inputs :
31 n_pos (int): number of positive instances in dataset
32 n_neg (int): number of negative instances in dataset
33 n_features (int): number of features in dataset
34 n_inf_features (int): number of informative features in
35 predicting target
36 sd (float): standard deviation of the data
37 class1_mean (float): desired mean for class 1
38 """
39 class0 = np.array(np. random . normal (loc = 0, scale = 1, size = (n_neg

* n_features)))
40 class0 = np. reshape (class0 , (n_neg , n_features))
41 class0 = pd. DataFrame (class0)
42

43 class1 = np.array(np. random . normal (loc = class1_mean , scale = sd ,
size = (n_pos* n_inf_features)))

44 class1 = np. reshape (class1 , (n_pos , n_inf_features))
45 class1_cols = np.r_[(n_features - n_inf_features):(n_features +

n_inf_features -2)]
46 class1 = pd. DataFrame (class1 , columns = class1_cols)
47

48 classr1 = np.array(np. random . normal (loc = 0, scale = 1, size = (
n_pos *(n_features - n_inf_features))))

49 classr1 = np. reshape (classr1 , (n_pos , (n_features - n_inf_features)))
50 classr1 = pd. DataFrame (classr1)
51

52 c1_full_names = np.r_ [0:(n_features)]
53 class1_full = pd. concat ([class1 , classr1], axis =1)
54 class1_full = pd. DataFrame (class1_full , columns = c1_full_names)

Synthetic data 70

55 data = pd. concat ([class0 , class1_full], axis = 0)
56

57 labels = ["0", "1"]
58 full_labels = np. repeat (labels , [n_neg , n_pos])
59 full_labels = pd. DataFrame (full_labels)
60 full_labels = full_labels . rename (columns = {0: 'target '})
61

62 full_data = np. append (data , full_labels . to_numpy (), axis = 1)
63 full_data = pd. DataFrame (full_data)
64 full_data . columns = [* full_data . columns [:-1], 'target ']
65

66 return (full_data)
67

68 ##### Sample values
69 df2 = imbalanced_data_generator (n_pos = 100,
70 n_neg = 2000 ,
71 n_features = 2,
72 n_inf_features = 2,
73 sd = 1,
74 class1_mean = 5)
75

76 # Create datasets , train/test splits , initialize SMOTE
77 X2 = df2.drop('target ', axis =1)
78 y2 = df2 [['target ']]
79 X_train , X_test , y_train , y_test = train_test_split (X2 ,
80 y2 ,
81 test_size = 0.30 ,
82 random_state = 20)
83 smote = SMOTE(random_state = 20)
84 X_train_smote , y_train_smote = smote. fit_resample (X_train , y_train)
85

86 # GB: No resampling
87 gb = GradientBoostingClassifier (random_state = 20)
88 gb_pred = gb.fit(X_train , y_train). predict (X_test)
89 print(classification_report (y_test , gb_pred))
90 print(round(balanced_accuracy_score (y_test , gb_pred), 3))
91

92 # GB: SMOTE resampling
93 gb = GradientBoostingClassifier (random_state = 20)
94 gb_pred_smote = gb.fit(X_train_smote , y_train_smote). predict (X_test)
95 print(classification_report (y_test , gb_pred_smote))
96 print(round(balanced_accuracy_score (y_test , gb_pred_smote), 3))
97

98 # RF: No resampling
99 rf = RandomForestClassifier (random_state = 20)

100 rf_pred = rf.fit(X_train , y_train). predict (X_test)
101 print(classification_report (y_test , rf_pred))
102 print(round(balanced_accuracy_score (y_test , rf_pred), 3))
103

104 # RF: SMOTE resampling
105 rf = RandomForestClassifier (random_state = 20)
106 rf_pred_smote = rf.fit(X_train_smote , y_train_smote). predict (X_test)
107 print(classification_report (y_test , rf_pred_smote))
108 print(round(balanced_accuracy_score (y_test , rf_pred_smote), 3))

Synthetic data 71

109

110 # GNB: No resampling
111 gnb = GaussianNB ()
112 gnb_pred = gnb.fit(X_train , y_train). predict (X_test)
113 print(classification_report (y_test , gnb_pred))
114 print(balanced_accuracy_score (y_test , gnb_pred))
115

116 # GNB: SMOTE resampling
117 gnb = GaussianNB ()
118 gnb_pred_smote = gnb.fit(X_train_smote , y_train_smote). predict (X_test)
119 print(classification_report (y_test , gnb_pred_smote))
120 print(round(balanced_accuracy_score (y_test , gnb_pred_smote), 3))
121

122 ##### Figures #####
123

124 # Hard case: X ~ N(0 ,1) and Y ~ N(1 ,1)
125 mu_0 = 0
126 mu_1 = 1
127 variance = 1
128 sigma = math.sqrt(variance)
129 x = np. linspace (mu_0 - (3 * sigma), mu_0 + (3 * sigma), 100)
130 x_1 = np. linspace (mu_1 - (3 * sigma), mu_1 + (3 * sigma), 100)
131

132 plt.plot(x, stats.norm.pdf(x, mu_0 , sigma))
133 plt.plot(x_1 , stats.norm.pdf(x_1 , mu_1 , sigma))
134 plt.title('Hard Case: $X\sim N(0 ,1)$ and $Y\sim N(1 ,1)$')
135 plt.show ()
136

137 # Easy case: X ~ N(0 ,1) and Y ~ N(5 ,1)
138 mu_0 = 0
139 mu_1 = 5
140 variance = 1
141 sigma = math.sqrt(variance)
142 x = np. linspace (mu_0 - 3* sigma , mu_0 + 3* sigma , 100)
143 x_1 = np. linspace (mu_1 - 3* sigma , mu_1 + 3* sigma , 100)
144 plt.plot(x, stats.norm.pdf(x, mu_0 , sigma))
145 plt.plot(x_1 , stats.norm.pdf(x_1 , mu_1 , sigma))
146 plt.title('Easy Case: $X\sim N(0 ,1)$ and $Y\sim N(5 ,1)$')
147 plt.show ()

Generating Classifier Results Figure

After collating results of the classifier experiments, where we vary sd and class1_mean
parameters to test different difficulty settings, into a csv file, we create a visualization of
these results in R. The code to generate this visualization, shown in Figure 3.4, is given
below.

We tidy each separate dataset, where type1 represents the easiest case, type2 represents a
medium case, and type3 represents the hardest case. Each setting is defined in Table A.1
for reference.

After combining these datasets in line 57, which we refer to as full_df, we plot the
balanced accuracy of each experiment. In the plot, we use color to differentiate between

Synthetic data 72

imbalance levels, shape to differentiate between easy and hard difficulty levels in each
experiment, and shape to show whether or not we use SMOTE resampling.

Experimental Setting Code Reference Distribution Comparison
Easy type1 X ∼ N(0, 1), Y ∼ N(5, 3)

Medium type2 X ∼ N(0, 1), Y ∼ N(3, 3)
Hard type3 X ∼ N(0, 1), Y ∼ N(2, 3)

Table A.1: Experimental settings for the generated figure.

1 # Load packages
2 library (tidyverse)
3 library (latex2exp)
4 library (ggpubr)
5

6 # Load data
7 type1 <- read_csv("type1.csv") # Easiest
8 type2 <- read_csv("type2.csv") # Medium
9 type3 <- read_csv("type3.csv") # Hardest

10

11 # The difficulty comes from the original excel dataset
12 difficulty <- c(
13 "hard", "hard", "hard", "hard", "hard", "hard",
14 "easy", "easy", "easy", "easy", "easy", "easy"
15)
16

17 # Tidy type1
18 type1 <- cbind(type1 , difficulty) %>%
19 mutate (id = row_ number ())
20 type1_tidy <- gather (type1 , key = " imbalance _lvl",
21 value = "bal_acc", -c(" difficulty ", "id")) %>%
22 mutate (imbalance _lvl = readr :: parse_ number (imbalance _lvl)) %>%
23 mutate (
24 imbalance _lvl = as. factor (imbalance _lvl),
25 resample = ifelse (id %% 2 == 0, "SMOTE", "None"),
26 id = as. factor (id),
27 type = "Easy Distributions "
28)
29

30 # Tidy type2
31 type2 <- cbind(type2 , difficulty) %>%
32 mutate (id = row_ number ())
33 type2_tidy <- gather (type2 , key = " imbalance _lvl",
34 value = "bal_acc", -c(" difficulty ", "id")) %>%
35 mutate (imbalance _lvl = readr :: parse_ number (imbalance _lvl)) %>%
36 mutate (
37 imbalance _lvl = as. factor (imbalance _lvl),
38 resample = ifelse (id %% 2 == 0, "SMOTE", "None"),
39 id = as. factor (id),
40 type = " Medium Easy Distributions "
41)
42

43 # Tidy type3

Synthetic data 73

44 type3 <- cbind(type3 , difficulty) %>%
45 mutate (id = row_ number ())
46 type3_tidy <- gather (type3 , key = " imbalance _lvl",
47 value = "bal_acc", -c(" difficulty ", "id")) %>%
48 mutate (imbalance _lvl = readr :: parse_ number (imbalance _lvl)) %>%
49 mutate (
50 imbalance _lvl = as. factor (imbalance _lvl),
51 resample = ifelse (id %% 2 == 0, "SMOTE", "None"),
52 id = as. factor (id),
53 type = "Hard Distributions "
54)
55

56 # Combine datasets
57 full_df <- rbind(type1_tidy , type2_tidy , type3_tidy)
58 full_df$type <- factor (full_df$type ,
59 levels = c("Easy Distributions ",
60 " Medium Easy Distributions ",
61 "Hard Distributions "))
62

63 # Plot
64 ggplot (full_df , aes(x = id , y = bal_acc , color = imbalance _lvl ,
65 shape = difficulty , size = resample)) +
66 geom_point () +
67 facet_wrap(~ type) +
68 labs(
69 x = " Experiment Number ",
70 y = " Balanced Accuracy ",
71 shape = " Difficulty ",
72 color = " Imbalance Level",
73 size = " Resampling Method "
74) +
75 theme_bw() +
76 theme(
77 legend . position = "none",
78 strip.text.x = element _text(size = 13)
79)
80

81 # Save plot
82 ggsave (" imbalance _diff.png")

A.1.2 Synthetic Data Test: Neural Networks
We also test classification performance of neural networks on synthetic datasets. We use
the following parameters in this sample experiment, shown in line 66:

• n_pos = 100

• n_neg = 2000

• n_features = 2

• n_inf_features = 2

• sd = 1

Synthetic data 74

• class1_mean = 1.

Since we define the mean of class1 to be 1 and its standard deviation to be 1, this sample
code shows the results of a hard case because mean and standard deviation of the other
class, set by default in the imbalanced_data_generator function, are 0 and 1. Note that
both class1 and class0 follow a Normal distribution with these specified parameters.

In this sample experiment, we set the following hyperparameters:

• BATCH_SIZE = 16

• HIDDEN_NODES = 50

• EPOCHS = 100

• LEARNING_RATE = 0.0001.

These hyperparameters can be changed to accommodate the desired experimental setting.
The code for this experiment is shown below.

1 # Import pacakges
2 import pandas as pd
3 import numpy as np
4 import random
5 import matplotlib . pyplot as plt
6 from itertools import chain
7 import imblearn
8 from imblearn . over_sampling import SMOTE
9

10 from sklearn . model_selection import train_test_split
11 from sklearn import preprocessing
12 from sklearn . preprocessing import StandardScaler
13 from sklearn import metrics
14 from sklearn . metrics import balanced_accuracy_score ,

classification_report
15

16 import torch
17 import torch.nn as nn
18 import torch.optim as optim
19 from torch.utils.data import Dataset , DataLoader
20

21 # Function to generate data
22 def imbalanced_data_generator (n_pos ,
23 n_neg ,
24 n_features ,
25 n_inf_features ,
26 sd ,
27 class1_mean):
28

29 class0 = np.array(np. random . normal (loc = 0,
30 scale = 1,
31 size = (n_neg * n_features)))
32 class0 = np. reshape (class0 , (n_neg , n_features))
33 class0 = pd. DataFrame (class0)
34

Synthetic data 75

35 class1 = np.array(np. random . normal (loc = class1_mean ,
36 scale = sd ,
37 size = (n_pos * n_inf_features)))
38 class1 = np. reshape (class1 , (n_pos , n_inf_features))
39 class1_cols = np.r_[(n_features - n_inf_features):
40 (n_features + n_inf_features - 2)]
41 class1 = pd. DataFrame (class1 , columns = class1_cols)
42

43 classr1 = np.array(np. random . normal (loc = 0,
44 scale = 1,
45 size = (n_pos * (n_features - n_inf_features))))
46 classr1 = np. reshape (classr1 , (n_pos , (n_features - n_inf_features))

)
47 classr1 = pd. DataFrame (classr1)
48

49 c1_full_names = np.r_ [0:(n_features)]
50 class1_full = pd. concat ([class1 , classr1], axis = 1)
51 class1_full = pd. DataFrame (class1_full , columns = c1_full_names)
52 data = pd. concat ([class0 , class1_full], axis = 0)
53

54 labels = ["0", "1"]
55 full_labels = np. repeat (labels , [n_neg , n_pos])
56 full_labels = pd. DataFrame (full_labels)
57 full_labels = full_labels . rename (columns = {0: 'target '})
58

59 full_data = np. append (data , full_labels . to_numpy (), axis = 1)
60 full_data = pd. DataFrame (full_data)
61 full_data . columns = [* full_data . columns [:-1], 'target ']
62

63 return (full_data)
64

65 # Run function to generate dataset
66 res = imbalanced_data_generator (n_pos = 100,
67 n_neg = 2000 ,
68 n_features = 2,
69 n_inf_features = 2,
70 sd = 1,
71 class1_mean = 1)
72

73 # Set hyperparameters
74 BATCH_SIZE = 16
75 HIDDEN_NODES = 50
76 EPOCHS = 100
77 LEARNING_RATE = 0.0001
78

79 # Define dataset , use 70:30 train:test split
80 X = res.drop('target ', axis = 1)
81 y = res [['target ']]
82 X_train , X_test , y_train , y_test = train_test_split (X,
83 y,
84 test_size = 0.30 ,
85 random_state = 42)
86

87 # Standardize

Synthetic data 76

88 scaler = StandardScaler ()
89 X_train = scaler . fit_transform (X_train)
90 X_test = scaler . fit_transform (X_test)
91

92 # Data Loader for training data
93 class trainData (Dataset):
94

95 def __init__ (self , X_data , y_data):
96 self. X_data = X_data
97 self. y_data = y_data
98

99 def __getitem__ (self , index):
100 return self. X_data [index], self. y_data [index]
101

102 def __len__ (self):
103 return len(self. X_data)
104

105 y_train = y_train . astype (np. float32)
106 train_data = trainData (torch. FloatTensor (X_train),
107 torch. from_numpy (y_train . values))
108

109 # Data Loader for testing data
110 class testData (Dataset):
111

112 def __init__ (self , X_data):
113 self. X_data = X_data
114

115 def __getitem__ (self , index):
116 return self. X_data [index]
117

118 def __len__ (self):
119 return len(self. X_data)
120

121

122 test_data = testData (torch. FloatTensor (X_test))
123 train_loader = DataLoader (dataset = train_data , batch_size = BATCH_SIZE ,
124 shuffle = True)
125 test_loader = DataLoader (dataset = test_data , batch_size = 1)
126

127 # Define neural network
128 class binaryClassification (nn. Module):
129 def __init__ (self):
130 super(binaryClassification , self). __init__ ()
131 # Number of input features is 2
132 self. layer_1 = nn. Linear (2, HIDDEN_NODES)
133 self. layer_2 = nn. Linear (HIDDEN_NODES , HIDDEN_NODES)
134 self. layer_out = nn. Linear (HIDDEN_NODES , 1)
135

136 self.relu = nn.ReLU ()
137 self. dropout = nn. Dropout (p=0.3)
138 self. batchnorm1 = nn. BatchNorm1d (HIDDEN_NODES)
139 self. batchnorm2 = nn. BatchNorm1d (HIDDEN_NODES)
140

141 def forward (self , inputs):

Synthetic data 77

142 x = self.relu(self. layer_1 (inputs))
143 x = self. batchnorm1 (x)
144 x = self.relu(self. layer_2 (x))
145 x = self. batchnorm2 (x)
146 x = self. dropout (x)
147 x = self. layer_out (x)
148

149 return x
150

151

152 # Define model , loss , optimizer
153 device = torch. device ("cuda :0" if torch.cuda. is_available () else "cpu")
154 model = binaryClassification ()
155 criterion = nn. BCEWithLogitsLoss ()
156 optimizer = optim.Adam(model. parameters (), lr = LEARNING_RATE)
157

158 # Train model
159 def binary_acc (y_pred , y_test):
160 y_pred_tag = torch.round(torch. sigmoid (y_pred))
161 correct_results_sum = (y_pred_tag == y_test).sum ().float ()
162 acc = correct_results_sum / y_test .shape [0]
163 acc = torch.round(acc * 100)
164 return acc
165

166 model.train ()
167

168 loss_vals =[]
169 for e in range (1, EPOCHS +1):
170 epoch_loss = 0
171 epoch_acc = 0
172

173 for X_batch , y_batch in train_loader :
174 X_batch , y_batch = X_batch .to(device), y_batch .to(device)
175

176 optimizer . zero_grad ()
177 y_pred = model(X_batch)
178

179 loss = criterion (y_pred , y_batch)
180 acc = binary_acc (y_pred , y_batch)
181

182 loss. backward ()
183 optimizer .step ()
184

185 epoch_loss += loss.item ()
186 epoch_acc += acc.item ()
187

188 loss_vals . append (epoch_loss /len(train_loader))
189

190 if e % 10 == 0:
191 print(f'Epoch {e +0:03}: | \
192 Loss: { epoch_loss /len(train_loader):.5f} | \
193 Acc: { epoch_acc /len(train_loader):.3f}')
194

195 plt. xlabel ('Epochs ')

Synthetic data 78

196 plt. ylabel ('Loss ')
197 plt.title('Loss per Epoch ')
198 plt.plot(loss_vals)
199

200 # Test model
201 y_pred_list = []
202 model.eval ()
203 with torch. no_grad ():
204 for X_batch in test_loader :
205 X_batch = X_batch .to(device)
206 y_test_pred = model(X_batch)
207 y_test_pred = torch. sigmoid (y_test_pred)
208 y_pred_tag = torch.round(y_test_pred)
209 y_pred_list . append (y_pred_tag .cpu ().numpy ())
210 y_pred_list = [a. squeeze (). tolist () for a in y_pred_list]
211 y_pred_list2 = [round(num) for num in y_pred_list]
212 y_test_new = list(chain. from_iterable (y_test . values . tolist ()))
213 y_test_new = [int(value) for value in y_test_new]
214

215 # Determine results
216 print(classification_report (y_test_new , y_pred_list2))
217 print(balanced_accuracy_score (y_test_new , y_pred_list2))

Generating Neural Network Results Figures

The code below shows the R scripts for generating the results of the neural network
experiments with and without SMOTE resampling using generated data, shown in Chapter
3.

This code generates Figure 3.5A, where we plot the balanced accuracy of the neural
network on different difficulty levels at imbalance levels of ρ = 0.05, 0.1 and 0.2.

1 # Load packages
2 library (tidyverse)
3 library (latex2exp)
4

5 # Load and tidy data
6 data <- read_csv("nn_ datagen .csv")
7 data_tidy <- data %>%
8 mutate (
9 difficulty = as. factor (difficulty),

10 imbalance _lvl = as. factor (imbalance _lvl),
11 difficulty = fct_ relevel (difficulty , "med_easy", after = 1),
12 difficulty = fct_ relevel (difficulty , "hard", after = 3)
13)
14

15 # Plot
16 ggplot (data_tidy , aes(x = imbalance _lvl , y = balanced _accuracy ,
17 color = difficulty)) +
18 geom_point(size = 3) +
19 labs(
20 title = " Balanced Accuracy in Data Generation Experiments
21 \ nUsing Neural Networks : No Resampling ",
22 x = TeX(" Imbalance Level ($\\ rho$)"),

Synthetic data 79

23 y = " Balanced Accuracy ",
24 color = " Difficulty "
25) +
26 theme_ classic () +
27 theme(
28 plot.title = element _text(hjust = 0.5) ,
29 plot. subtitle = element _text(hjust = 0.5)
30) +
31 scale_color_ manual (
32 labels = c("Easy", " Medium Easy", " Medium Hard", "Most Difficult "),
33 values = c("#1 e7640", "# de772d ", "# e815dd ", "4d88s4")
34) +
35 guides (color = guide_ legend (" Difficulty "))
36

37 # Save plot
38 ggsave ("nn_ imbalance _plt.png")

This code chunk generates Figure 3.5B, where we use the same neural network structure
used for Figure 3.5A but resample the data with SMOTE.

1 # Load packages
2 library (tidyverse)
3 library (latex2exp)
4

5 # Load data and clean data
6 data <- read_csv("nn_ datagen _ resample .csv")
7 data_tidy <- data %>%
8 mutate (
9 difficulty = as. factor (difficulty),

10 imbalance _lvl = as. factor (imbalance _lvl),
11 difficulty = fct_ relevel (difficulty , "med_easy", after = 1),
12 difficulty = fct_ relevel (difficulty , "hard", after = 3)
13)
14

15 # Plot
16 ggplot (data_tidy , aes(x = imbalance _lvl , y = balanced _accuracy ,
17 color = difficulty)) +
18 geom_point(size = 3) +
19 labs(
20 title = " Balanced Accuracy in Data Generation Experiments
21 \ nUsing Neural Networks : SMOTE Resampling ",
22 x = TeX(" Imbalance Level ($\\ rho$)"),
23 y = " Balanced Accuracy ",
24 color = " Difficulty "
25) +
26 theme_ classic () +
27 theme(
28 plot.title = element _text(hjust = 0.5) ,
29 plot. subtitle = element _text(hjust = 0.5)
30) +
31 scale_color_ manual (
32 labels = c("Easy", " Medium Easy", " Medium Hard", "Most Difficult "),
33 values = c("#1 e7640", "# de772d ", "# e815dd ", "4d88s4")
34) +
35 guides (color = guide_ legend (" Difficulty "))

Synthetic data 80

36

37 # Save plot
38 ggsave ("nn_SMOTE_imb_plt.png")

A.2 Varying Imbalance levels
In order to test how the synthetic data from our imbalanced_data_generator() function
performs at all imbalance levels, we must create a function first to calculate how many
positives are needed to achieve each imbalance level from 0.1 to 1.

A.2.1 Single-Attempt Classification
To generate Figure 3.6, we first outline the mathematical process to create this function,
called calc_pos_neg(), and then show both this function and the imb_sim() function
that tests all the desired imbalance levels.

Mathematical Process

Using a fixed T , total amount of observations in our generated dataset, we can calculate
mn and mp, the number of negative and positive observations needed in the dataset, to
achieve a desired imbalance level ρ.

Note that by definition, ρ = mp
mn

and T = mn +mp. We then have:

mp

mn

= ρ

⇐⇒ T −mn

mn

= ρ

⇐⇒ T −mn = mn · ρ
⇐⇒ T = mn · ρ+mn

⇐⇒ T = mn(1 + ρ)

⇐⇒ mn = T

1 + ρ

Using this value of mn and our fixed value of T , we can calculate mp as mp = T −mn.

Function to Test Imbalance

Below, we show the code used to generate Figure 3.6 that tests classifier performance over
all imbalance levels on the generated datasets.

1 # Import packages
2 import random
3 import numpy as np
4 import pandas as pd
5 import matplotlib . pyplot as plt

Synthetic data 81

6 import seaborn as sns
7

8 from sklearn . ensemble import GradientBoostingClassifier
9 from sklearn . metrics import balanced_accuracy_score

10 from sklearn . model_selection import train_test_split
11 from sklearn . naive_bayes import GaussianNB
12 from sklearn . ensemble import RandomForestClassifier
13

14 # Define imbalance levels of interest
15 imb_lvls = np. linspace (0 ,1 ,101) # Vector of imbalance levels 0.01 - 1
16

17 # Determine how many positive and negatives to achieve desired imbalance
18 def calc_pos_neg (imb_lvls):
19 """ Goal: Calculate n_pos and n_neg for data generation function
20 based on imbalance levels
21

22 Input:
23 imb_lvls (vector): imbalance levels to test
24 """
25

26 # Initialize dataset size and arrays
27 total_obs = 2100
28 n_pos , n_neg = [], []
29

30 # Append values for imbalance levels
31 for i in range (0, len(imb_lvls)):
32 denominator = 1 + imb_lvls [i]
33 n_neg. append (int(round ((total_obs / denominator))))
34 n_pos. append (total_obs - n_neg[i])
35

36 # Concatenate arrays into dataset
37 data_class = {"n_pos": n_pos , "n_neg": n_neg}
38 data_class = pd. DataFrame (data_class)
39 data_class = data_class .iloc [1:]
40

41 # Return dataset
42 return data_class
43

44 # Get n_pos , n_neg based on desired imbalance levels
45 pos_neg = calc_pos_neg (imb_lvls)
46

47 # Function to test imbalance at all levels
48 def imb_sim (pos_neg , sd , mean):
49

50 """ Imbalance testing Function
51

52 Inputs :
53 pos_neg (dataframe): Dataset with num. pos ./ neg.
54 sd (int): Standard deviation of normal distribution
55 mean (int): Mean of normal distribution
56 """
57

58 # Get number of positive and negative based on calculation
59 n_pos = pos_neg .loc [:,'n_pos ']. values

Synthetic data 82

60 n_neg = pos_neg .loc [:,'n_neg ']. values
61

62 # Initialize array for results of classification
63 rf_res = []
64 nb_res = []
65 gb_res = []
66

67 for i in range (0, len(n_pos)):
68

69 # Generate imbalanced dataset with parameters
70 imb_df = imbalanced_data_generator (n_pos = n_pos[i],
71 n_neg = n_neg[i],
72 n_features = 2,
73 n_inf_features = 2,
74 sd = sd ,
75 class1_mean = mean)
76 X = imb_df .drop('target ', axis =1)
77 y = imb_df [['target ']]
78

79 # Create train and test split (70:30 train:test)
80 X_train , X_test , y_train , y_test = train_test_split (X, y,
81 test_size = 0.30 , \
82 random_state = 20)
83

84 # Classify Random Forest
85 rf = RandomForestClassifier (random_state = 20)
86 rf_pred = rf.fit(X_train , y_train). predict (X_test)
87 rf_res . append (balanced_accuracy_score (y_test , rf_pred))
88

89 # Classify Gaussian Naive Bayes
90 nb = GaussianNB ()
91 nb_pred = nb.fit(X_train , y_train). predict (X_test)
92 nb_res . append (balanced_accuracy_score (y_test , nb_pred))
93

94 # Classify Gradient Boost
95 gb = GradientBoostingClassifier (random_state = 20)
96 gb_pred = gb.fit(X_train , y_train). predict (X_test)
97 gb_res . append (balanced_accuracy_score (y_test , gb_pred))
98

99

100 # Dataframe of results
101 results = {" imb_lvl ": imb_lvls [1:] , "gb": gb_res , "nb": nb_res , "rf"

: rf_res }
102 results = pd. DataFrame (results)
103

104 # Return results
105 return (results)
106

107 # Run function to get results
108 SD = 1 # Choose sd
109 MEAN = 5 # Choose mean
110 easy1 = imb_sim (pos_neg = pos_neg , sd = SD , mean = MEAN)
111 easy1 = pd.melt(easy1 , id_vars = 'imb_lvl ',
112 value_vars = ['gb ', 'nb ', 'rf '],

Synthetic data 83

113 value_name = 'bal_acc ', var_name = ['classifier '])
114

115 # Plot
116 sns. set_style ('whitegrid ')
117 sns. set_palette (['tab:pink ', 'tab:cyan ', 'tab:olive '])
118 plt. figure (figsize = (8, 5))
119 sns. lineplot (data = easy1 , x = 'imb_lvl ', y = 'bal_acc ',
120 hue = 'classifier ',
121 legend = None);
122 plt. xlabel ('Imbalance Level ', size = 20)
123 plt. ylabel ('Balanced Accuracy ', size = 20)
124 plt. xticks (fontsize = 20)
125 plt. yticks (fontsize = 20)
126 plt.title('$X\sim N(0 ,1) ,\, Y\sim N(5 ,1)$', size = 20);
127 plt. legend (title = 'Classifier ', fontsize ='large ',
128 title_fontsize ='14 ',
129 labels =['Gradient Boosting ', 'Gaussian Naive Bayes ',
130 'Random Forest ']);
131 plt. savefig ('imb_sim_easy ')

A.2.2 Simulation Study
To generate Figure 3.7, we perform the process shown in Section A.2.1 N times, where
N = 100 in our experiment. The code is similar to that shown in Section A.2.1, but we
have to add an extra loop to iterate from 1 to N.

The imbalanced_data_generator() function is defined first, which is discussed in detail
in Chapter 3. We then define the calc_pos_neg() function which uses the mathemat-
ical process outlined in Section A.2.1 to determine the number of positive and negative
instances needed in our dataset of a fixed size to acheive each imbalance level from 0.1-1.

Finally, the imb_sim() function iterates through all the imbalance levels and calculates
the balanced accuracy of each classifier prediction N times. Note that we can change N
by changing the parameter value set in line 94 below.

The results of the experiment are shown on an easy case below because we set sd=1 and
mean=5 in line 151, meaning we are considering the classification of X ∼ N(0, 1) and
Y ∼ N(5, 1).

We then plot our simulation results using the Seaborn and Matplotlib modules in lines
167-185.

1 # Import packages
2 import random
3 import numpy as np
4 import pandas as pd
5 import matplotlib . pyplot as plt
6 import seaborn as sns
7

8 from sklearn . ensemble import GradientBoostingClassifier
9 from sklearn . ensemble import RandomForestClassifier

10 from sklearn . naive_bayes import GaussianNB

Synthetic data 84

11 from sklearn . metrics import balanced_accuracy_score
12 from sklearn . model_selection import train_test_split
13

14 # Function to generate data
15 def imbalanced_data_generator (n_pos ,
16 n_neg ,
17 n_features ,
18 n_inf_features ,
19 sd ,
20 class1_mean):
21 """
22 Imbalanced Data Generator
23 """
24 class0 = np.array(np. random . normal (loc = 0, scale = 1, size = (n_neg

* n_features)))
25 class0 = np. reshape (class0 , (n_neg , n_features))
26 class0 = pd. DataFrame (class0)
27

28 class1 = np.array(np. random . normal (loc = class1_mean , scale = sd ,
size = (n_pos* n_inf_features)))

29 class1 = np. reshape (class1 , (n_pos , n_inf_features))
30 class1_cols = np.r_[(n_features - n_inf_features):(n_features +

n_inf_features -2)]
31 class1 = pd. DataFrame (class1 , columns = class1_cols)
32

33 classr1 = np.array(np. random . normal (loc = 0, scale = 1, size = (
n_pos *(n_features - n_inf_features))))

34 classr1 = np. reshape (classr1 , (n_pos , (n_features - n_inf_features)))
35 classr1 = pd. DataFrame (classr1)
36

37 c1_full_names = np.r_ [0:(n_features)]
38 class1_full = pd. concat ([class1 , classr1], axis =1)
39 class1_full = pd. DataFrame (class1_full , columns = c1_full_names)
40 data = pd. concat ([class0 , class1_full], axis = 0)
41

42 labels = ["0", "1"]
43 full_labels = np. repeat (labels , [n_neg , n_pos])
44 full_labels = pd. DataFrame (full_labels)
45 full_labels = full_labels . rename (columns = {0: 'target '})
46

47 full_data = np. append (data , full_labels . to_numpy (), axis = 1)
48 full_data = pd. DataFrame (full_data)
49 full_data . columns = [* full_data . columns [:-1], 'target ']
50

51 return (full_data)
52

53 # Define vector of imbalance levels
54 imb_lvls = np. linspace (0 ,1 ,101) # Vector of imbalance levels 0.01 - 1
55

56 # Determine how many positive and negatives to achieve desired imbalance
57 def calc_pos_neg (imb_lvls):
58 """ Goal: Calculate n_pos and n_neg for data generation function
59 based on imbalance levels
60

Synthetic data 85

61 Input:
62 imb_lvls (vector): imbalance levels to test
63 """
64

65 # Initialize dataset size and arrays
66 total_obs = 2100
67 n_pos , n_neg = [], []
68

69 # Append values for imbalance levels
70 for i in range (0, len(imb_lvls)):
71 denominator = 1 + imb_lvls [i]
72 n_neg. append (int(round ((total_obs / denominator))))
73 n_pos. append (total_obs - n_neg[i])
74

75 # Concatenate arrays into dataset
76 data_class = {"n_pos": n_pos , "n_neg": n_neg}
77 data_class = pd. DataFrame (data_class)
78 data_class = data_class .iloc [1:]
79

80 # Return dataset
81 return data_class
82

83 # Get data based on desired imbalance levels
84 pos_neg = calc_pos_neg (imb_lvls)
85

86 # Imbalance simulation function
87 def imb_sim (pos_neg , sd , mean):
88

89 # Get number of positive and negative based on calculation
90 n_pos = pos_neg .loc [:,'n_pos ']. values
91 n_neg = pos_neg .loc [:,'n_neg ']. values
92

93 # Define number of iterations
94 N = 100
95

96 # Initialize arrays for results
97 rf_res = np.zeros(shape = (len(n_pos), N + 2))
98 nb_res = np.zeros(shape = (len(n_pos), N + 2))
99 gb_res = np.zeros(shape = (len(n_pos), N + 2))

100

101 for i in range (0, len(n_pos)):
102

103 # Generate N imbalanced datasets with parameters
104 for j in range (0, N):
105

106 # Generate dataset with certain imbalance level
107 imb_df = imbalanced_data_generator (n_pos = n_pos[i],
108 n_neg = n_neg[i],
109 n_features = 2,
110 n_inf_features = 2,
111 sd = sd ,
112 class1_mean = mean)
113 X = imb_df .drop('target ', axis =1)
114 y = imb_df [['target ']]

Synthetic data 86

115

116 # Create train and test split (70:30 train:test)
117 X_train , X_test , y_train , y_test = train_test_split (X, y,
118 test_size = 0.30)
119

120 # Classify Random Forest
121 rf = RandomForestClassifier ()
122 rf_pred = rf.fit(X_train , y_train). predict (X_test)
123 rf_res [i][j] = balanced_accuracy_score (y_test , rf_pred)
124 rf_res [i][10] = imb_lvls [i]
125 rf_res [i][11] = 1 # Indicates RF
126

127 # Classify Gaussian Naive Bayes
128 nb = GaussianNB ()
129 nb_pred = nb.fit(X_train , y_train). predict (X_test)
130 nb_res [i][j] = balanced_accuracy_score (y_test , nb_pred)
131 nb_res [i][10] = imb_lvls [i]
132 nb_res [i][11] = 2 # Indicates NB
133

134 # Classify Gradient Boost
135 gb = GradientBoostingClassifier ()
136 gb_pred = gb.fit(X_train , y_train). predict (X_test)
137 gb_res [i][j] = balanced_accuracy_score (y_test , gb_pred)
138 gb_res [i][10] = imb_lvls [i]
139 gb_res [i][11] = 3 # Indicates GB
140

141 # Make each result a dataframe and append them
142 rf_res = pd. DataFrame (rf_res)
143 nb_res = pd. DataFrame (nb_res)
144 gb_res = pd. DataFrame (gb_res)
145

146 # Create full dataset and return it
147 full_res = rf_res . append ([nb_res , gb_res])
148 return (full_res)
149

150 # Run simulation and reformat data
151 easy1 = imb_sim (pos_neg = pos_neg , sd = 1, mean = 5)
152 easy1. rename (columns = {easy1. columns [10]: " imb_lvl " },
153 inplace = True)
154 easy1. rename (columns = {easy1. columns [11]: " classifier " },
155 inplace = True)
156 easy1['classifier '] = easy1['classifier ']. replace ([1.0] , 'RF ')
157 easy1['classifier '] = easy1['classifier ']. replace ([2.0] , 'NB ')
158 easy1['classifier '] = easy1['classifier ']. replace ([3.0] , 'GB ')
159 easy1 = pd.melt(easy1 ,
160 id_vars = ['imb_lvl ', 'classifier '],
161 value_vars = [i for i in range (0, N)],
162 value_name = 'bal_acc ',
163 var_name = ['sim_run '])
164

165

166 # Plot
167 sns. set_style ('whitegrid ')
168 sns. set_palette (['tab:pink ', 'tab:cyan ', 'tab:olive '])

Synthetic data 87

169 plt. figure (figsize =(8, 5))
170 sns. lineplot (data = easy1 ,
171 x = 'imb_lvl ',
172 y = 'bal_acc ',
173 hue = 'classifier ',
174 legend = None);
175 plt. xlabel ('Imbalance Level ', size = 20)
176 plt. ylabel ('Balanced Accuracy ', size = 20)
177 plt. xticks (fontsize = 20)
178 plt. yticks (fontsize = 20)
179 plt.title('$X\sim N(0 ,1) ,\, Y\sim N(5 ,1)$', size = 20);
180 plt. legend (title = 'Classifier ',
181 fontsize ='large ',
182 title_fontsize ='14 ',
183 labels =['Gradient Boosting ',
184 'Gaussian Naive Bayes ',
185 'Random Forest ']);
186 plt. savefig ('real_sim_figure ')

Synthetic data 88

Appendix B
Intel Images

The code below shows the Intel Images dataset code, including a PCA used to determine
classification difficulty and neural network experiment structure and results analysis.

B.1 Determine Difficulty of Classification Tasks
As discussed in Chapter 4, we use PCA to determine the difficulty of each binary clas-
sification task in the Intel Images dataset. After defining the pca in line 86 of the code
chunk below, we separate the components using the pca.transform() function from the
Scikit-learn module. We define individual components, one in each of the three dimensions
(specified in the argument of decomposition.PCA()) in lines 92-94. We can then plot one
component against another and repeat this process for each combination of components.

1 # Import packages
2 import numpy as np
3 import os
4 from sklearn . metrics import confusion_matrix
5 from sklearn import decomposition
6 from sklearn .utils import shuffle
7 import matplotlib . pyplot as plt
8 import cv2
9 import tensorflow as tf

10 from tqdm import tqdm
11

12 from keras. applications .vgg16 import VGG16
13 from keras. preprocessing import image
14 from keras. applications .vgg16 import preprocess_input
15

16 # We need all the classes to conduct a PCA
17 class_names = ['mountain ', 'street ', 'glacier ',
18 'buildings ', 'sea ', 'forest ']
19 class_names_label = { class_name :i for i, class_name in enumerate (

class_names)}
20 IMAGE_SIZE = (150 , 150) # Set image size
21

22 # Load images
23 def load_data ():
24 """
25 Load the data
26 """
27

89

28 datasets = ['seg_train ', 'seg_test ']
29 output = []
30

31 # Iterate through training and test sets
32 for dataset in datasets :
33

34 images = []
35 labels = []
36

37 print(" Loading {}". format (dataset))
38

39 # Iterate through each folder corresponding to a category
40 for folder in os. listdir (dataset):
41 label = class_names_label [folder]
42

43 # Iterate through each image in our folder
44 for file in tqdm(os. listdir (os.path.join(dataset , folder))):
45

46 # Get the path name of the image
47 img_path = os.path.join(os.path.join(dataset , folder),
48 file)
49

50 # Open and resize the img
51 image = cv2. imread (img_path)
52 image = cv2. cvtColor (image , cv2. COLOR_BGR2RGB)
53 image = cv2. resize (image , IMAGE_SIZE)
54

55 # Append the image and its corresponding label to the
output

56 images . append (image)
57 labels . append (label)
58

59 images = np.array(images , dtype = 'float32 ')
60 labels = np.array(labels , dtype = 'int32 ')
61

62 output . append ((images , labels))
63

64 return output
65

66 # Load and shuffle data
67 (train_images , train_labels), (test_images , test_labels) = load_data ()
68 train_images , train_labels = shuffle (train_images , train_labels ,
69 random_state = 25)
70

71 # Get number of training
72 n_train = train_labels .shape [0]
73 n_test = test_labels .shape [0]
74 train_images = train_images / 255.0
75 test_images = test_images / 255.0
76

77 # Get features for PCA
78 model = VGG16(weights = 'imagenet ', include_top = False)
79 train_features = model. predict (train_images)
80 test_features = model. predict (test_images)

Intel Images 90

81 n_train , x, y, z = train_features .shape # Train dimensions
82 n_test , x, y, z = test_features .shape # Test dimensions
83 numFeatures = x * y * z # Total number of features
84

85 # PCA
86 pca = decomposition .PCA(n_components = 3)
87 X = train_features . reshape ((n_train , x * y * z))
88 pca.fit(X)
89 C = pca. transform (X)
90

91 # Individual PCA components (three dimensions)
92 C1 = C[: ,0]
93 C2 = C[: ,1]
94 C3 = C[: ,2]
95

96 # Show C1 vs. C2
97 plt. subplots (figsize = (10, 10))
98 for i, class_name in enumerate (class_names):
99 plt. scatter (C1[train_labels == i][:1000] ,

100 C2[train_labels == i][:1000] ,
101 label = class_name ,
102 alpha = 0.4)
103 plt. legend ()
104 plt.title("C1 vs. C2 PCA Projection ")
105 plt.show ()
106

107 # Show C2 vs. C3
108 plt. subplots (figsize =(10 ,10))
109 for i, class_name in enumerate (class_names):
110 plt. scatter (C2[train_labels == i][:1000] ,
111 C3[train_labels == i][:1000] ,
112 label = class_name ,
113 alpha = 0.4)
114 plt. legend ()
115 plt.title("C2 vs. C3 PCA Projection ")
116 plt.show ()
117

118 # Show C1 vs. C3
119 plt. subplots (figsize =(10 ,10))
120 for i, class_name in enumerate (class_names):
121 plt. scatter (C1[train_labels == i][:1000] ,
122 C3[train_labels == i][:1000] ,
123 label = class_name ,
124 alpha = 0.4)
125 legend = plt. legend ()
126 plt.title("C1 vs. C3 PCA Projection ")
127 plt.show ()

B.2 Neural Networks
After determining the difficulty of each classification task using PCA, we classified each
set of labels in the Intel Images dataset using a CNN, shown below. We define our

Intel Images 91

model using Keras with specified layers and parameters in line 112. After compiling this
model using the model.compile() function, we then fit our model using the model.fit()
function. To test the model, we compare the true test labels to the predicted labels with
the model.evaluate() function.

Note that when we define history in line 127, we can plot this to check the convergence
of the model’s loss and accuracy. Figure B.1 shows an example of convergence of the
model’s accuracy and loss during training for the Mountain vs. Street classification task.
As expected, both model accuracy and the accuracy of the validation set converge to 1.
Similarly, the loss of both the model and the validation set converge to 0 over the 20
epochs shown.

Figure B.1: Example of the convergence of the model’s accuracy (left) and loss (right)
during training.

1 import numpy as np
2 import os
3 from sklearn . metrics import confusion_matrix
4 from sklearn .utils import shuffle
5 import matplotlib . pyplot as plt
6 import cv2
7 import tensorflow as tf
8 from tqdm import tqdm
9 import random

10 import sys
11 import sklearn
12

13 # Choose labels and set image size
14 class_names = ['mountain ', 'street ']
15 class_names_label = { class_name :i for i, class_name in enumerate (

class_names)}
16 IMAGE_SIZE = (150 , 150)
17

18 # Load data function
19 def load_data ():
20 """
21 Data loading function
22 """
23

24 datasets = ['seg_train ', 'seg_test ']

Intel Images 92

25 output = []
26

27 # Iterate through training and test sets
28 for dataset in datasets :
29

30 images = []
31 labels = []
32

33 print(" Loading {}". format (dataset))
34

35 # Iterate through each folder corresponding to a category
36 for folder in os. listdir (dataset):
37

38 # Check if folder is one of the ones we care about
39 if folder not in class_names :
40 continue
41

42 label = class_names_label [folder]
43

44 # Iterate through each image in our folder
45 for file in tqdm(os. listdir (os.path.join(dataset , folder))):
46

47 # Get the path name of the image
48 img_path = os.path.join(os.path.join(dataset , folder),
49 file)
50

51 # Open and resize the img
52 image = cv2. imread (img_path)
53 image = cv2. cvtColor (image , cv2. COLOR_BGR2RGB)
54 image = cv2. resize (image , IMAGE_SIZE)
55

56 # Append the image and label to the output
57 images . append (image)
58 labels . append (label)
59

60 images = np.array(images , dtype = 'float32 ')
61 labels = np.array(labels , dtype = 'int32 ')
62

63 output . append ((images , labels))
64

65 return output
66

67 # Define training and testing datasets
68 (train_images , train_labels), (test_images , test_labels) = load_data ()
69 train_images , train_labels = shuffle (train_images , train_labels ,
70 random_state = 25)
71

72

73 ### Remove instances from positive class to create imbalance
74 pos_indices = [i for i, x in enumerate (train_labels) if x]
75 neg_indices = [i for i in range(len(train_labels)) if i not in
76 pos_indices]
77 train_images_neg = train_images [neg_indices]
78 train_images_pos = train_images [pos_indices]

Intel Images 93

79

80

81 # Number of observations to remove (to create imbalance)
82 prop_keep = .10 # Prop. to keep in positive class
83 obs_remove = (1 - prop_keep) * (len(pos_indices))
84 obs_remove = int(obs_remove)
85 obs_keep = len(pos_indices) - obs_remove
86

87 # Take obs_remove examples from positive class and remove
88 indices_to_keep = np. arange (obs_keep)
89 train_images_pos = train_images_pos [indices_to_keep]
90 train_images = np. concatenate ((train_images_pos , train_images_neg))
91 pos = [1] * len(train_images_pos)
92 neg = [0] * len(train_images_neg)
93 train_labels = np. concatenate ((pos , neg))
94

95 ### Visualize
96 n_train = train_labels .shape [0]
97 n_test = test_labels .shape [0]
98

99 _, train_counts = np. unique (train_labels , return_counts = True)
100 _, test_counts = np. unique (test_labels , return_counts = True)
101 pd. DataFrame ({ 'train ': train_counts ,
102 'test ': test_counts },
103 index= class_names
104).plot.bar ()
105 plt.show ()
106

107 # Standardize images
108 train_images = train_images / 255.0
109 test_images = test_images / 255.0
110

111 # Create model
112 model = tf.keras. Sequential ([
113 tf.keras. layers . Conv2D (32, (3, 3), activation = 'relu ',
114 input_shape = (150 , 150, 3)),
115 tf.keras. layers . MaxPooling2D (2 ,2) ,
116 tf.keras. layers . Conv2D (32, (3, 3), activation = 'relu '),
117 tf.keras. layers . MaxPooling2D (2 ,2) ,
118 tf.keras. layers . Flatten (),
119 tf.keras. layers .Dense (128 , activation = tf.nn.relu),
120 tf.keras. layers .Dense (6, activation = tf.nn. softmax)
121])
122 model. compile (optimizer = 'adam ',
123 loss = 'sparse_categorical_crossentropy ',
124 metrics = ['accuracy '])
125

126 # Fit model and train
127 history = model.fit(train_images , train_labels ,
128 batch_size = 128,
129 epochs = 20,
130 validation_split = 0.2)
131

132 # Test model

Intel Images 94

133 test_loss = model. evaluate (test_images , test_labels)

To compare the performance of the CNNs on both the easy and hard classification tasks
from the Intel Images dataset, we aggregate the balanced accuracy results in a dataset
and plot the effects of changing the imbalance levels on each classification tasks. The code
to generate Figure 4.3, which displays this comparison, is given below.

1 # Install packages
2 library (tidyverse)
3

4 # Load dataand clean
5 data <- read_csv("ii_imb.csv") %>%
6 filter (difficulty != " medium ")
7

8 # Separate data by imbalance levels
9 imb .05 <- data %>%

10 filter (imb_lvl == 0.05) %>%
11 mutate (id = row_ number ())
12 imb .1 <- data %>%
13 filter (imb_lvl == 0.1) %>%
14 mutate (id = row_ number ())
15 imb .2 <- data %>%
16 filter (imb_lvl == 0.2) %>%
17 mutate (id = row_ number ())
18

19 # Re - combine datasets
20 all_imb <- rbind(imb .05, imb .1, imb .2)
21

22 # Add experiment names
23 df <- all_imb %>%
24 mutate (
25 majority _class = toupper (stringr :: str_ extract (
26 majority _class ,
27 "^.{2}"
28)),
29 minority _class = toupper (stringr :: str_ extract (
30 minority _class ,
31 "^.{2}"
32))
33) %>%
34 mutate (
35 exp_ setting = paste0 (majority _class , "+", minority _class),
36 difficulty = ifelse (exp_ setting == "ST+BU", "hard", difficulty)
37)
38

39 # Prepare data for plot
40 df_plot <- df %>%
41 mutate (
42 imb_lvl = as. factor (imb_lvl),
43 difficulty = as. factor (difficulty)
44)
45 df_plot$exp_ setting <- factor (df_plot$exp_setting , levels = c(
46 "MO+ST", "MO+BU",
47 "ST+GL", "ST+SE",

Intel Images 95

48 "GL+BU", "MO+GL",
49 "MO+SE", "GL+SE",
50 "ST+BU"
51))
52 x
53 # Plot
54 ii_imb <- ggplot (df_plot , aes(
55 x = exp_setting , y = bal_acc ,
56 color = difficulty ,
57 shape = imb_lvl
58)) +
59 geom_point(size = 4) +
60 theme_ classic () +
61 labs(
62 x = " Experimental Setting ",
63 y = " Balanced Accuracy ",
64 color = " Difficulty ",
65 shape = " Imbalance Level",
66 title = "Intel Images Performance at Different Imbalance Levels "
67)
68

69 # Save plot
70 ggsave ("ii_imb.png")
71

72 # Calculate mean performance for table
73 mean_df <- df %>%
74 group_by(exp_ setting) %>%
75 summarise (mean_ba = mean(bal_acc))

Intel Images 96

Appendix C
Kaggle Credit Card Fraud

C.1 Comparison of Accuracy and Balanced Accuracy
This code compares the performance of Gradient Boosting, Gaussian Naive Bayes, and
Random Forest on the Kaggle Credit Card Fraud dataset with accuracy and balanced
accuracy. This code is used to generate the values in Table 3.3.

After reading in the data and defining the train and test sets with a 70:30 train-test
split, we perform classification using each classifier and print the balanced accuracy and
accuracy for each classification task.

Note that we do not make any modifications to the imbalance level of the Kaggle Credit
Cards dataset for this analysis. The original dataset has an imbalance level of approxim-
ately ρ = 0.002, which is lower than any imbalance level we test in later experiments.

1 # Import pacakges
2 import pandas as pd
3 import imblearn
4 import numpy as np
5 import seaborn as sns
6

7 from sklearn . model_selection import train_test_split
8 from sklearn import metrics
9 from sklearn . metrics import balanced_accuracy_score , accuracy_score

10 from sklearn . ensemble import GradientBoostingClassifier ,
RandomForestClassifier

11 from sklearn . naive_bayes import GaussianNB
12

13 # Load data
14 df = pd. read_csv ('~/ Desktop / thesis . nosync /large -files. nosync / credit_card

/ creditcard .csv ')
15

16 # Create train and test set (70:30 train:test)
17 X = df.drop('Class ', axis =1)
18 y = df[['Class ']]
19 X_train , X_test , y_train , y_test = train_test_split (X, y,
20 test_size =0.30 , random_state =42)
21

22 # Gradient Boosting
23 gb = GradientBoostingClassifier (random_state = 20)
24 gb_pred = gb.fit(X_train , y_train). predict (X_test)
25 print('bal_acc ', balanced_accuracy_score (y_test , gb_pred))

97

26 print('acc ', accuracy_score (y_test , gb_pred))
27

28 # Gaussian Naive Bayes
29 gnb = GaussianNB ()
30 gnb_pred = gnb.fit(X_train , y_train). predict (X_test)
31 print('bal_acc ', balanced_accuracy_score (y_test , gnb_pred))
32 print('acc ', accuracy_score (y_test , gnb_pred))
33

34 # Random Forest
35 rf = RandomForestClassifier (random_state = 20)
36 rf_pred = rf.fit(X_train , y_train). predict (X_test)
37 print('bal_acc ', balanced_accuracy_score (y_test , rf_pred))
38 print('acc ', accuracy_score (y_test , rf_pred))

C.2 Classification at Selected Values of ρ
We can conduct the same classification shown in Section C.1 but change the imbalance
level in the Kaggle Credit Cards dataset to test the effects of different values of ρ on
classifier performance with and without resampling.

To do so, we first define our desired value of ρ. Recall that ρ is defined as ρ = mp
mn

, so
we can first check the number of positive instances in the dataset and then determine
the amount of negative instances we want to keep in the dataset because, rearranging the
equation for ρ, we have that m′n = mp

ρ
. Then, we remove mn − m′n from the negative

observations in the dataset to achieve the desired ρ. This process is shown in code in lines
22-34.

After completing this process, we separate the data into train and test sets using a 70:30
train-test split, as before. We also define resampled dataset with SMOTE, shown in lines
43-44.

Finally, we classify the data with each of our classifiers both with and without resampling.
1 # Import packages
2 import numpy as np
3 import pandas as pd
4 import os
5

6 import sklearn
7 from sklearn . model_selection import train_test_split
8 from sklearn import metrics
9 from sklearn . metrics import balanced_accuracy_score ,

classification_report
10 from sklearn . ensemble import GradientBoostingClassifier ,

RandomForestClassifier
11 from sklearn . naive_bayes import GaussianNB
12

13 import imblearn
14 from imblearn . over_sampling import SMOTE , RandomOverSampler , ADASYN
15 from imblearn . under_sampling import NearMiss
16 from imblearn . combine import SMOTEENN , SMOTETomek
17

Kaggle Credit Card Fraud 98

18 # Load Data
19 df = pd. read_csv ('~/ Desktop / thesis . nosync /large -files. nosync / credit_card

/ creditcard .csv ')
20

21 ##### Create imbalance #####
22 RHO = 0.05 # Set rho to some value
23 m_n_init = len(df[df['Class '] == 0]. index) # Initial num. neg.
24 m_p = len(df[df['Class '] == 1]. index) # Num. pos.
25 m_n_want = round(m_p / RHO) # Num. neg. for imbalance level
26 to_remove = round(m_n_init - m_n_want) # Num neg. instances to remove
27

28 # Separate negative and positive data
29 neg_data = df[df['Class '] == 0]
30 pos_data = df[df['Class '] == 1]
31 # Remove to_remove obs from neg_data
32 neg_data = neg_data .iloc[to_remove :]
33 # Concatenate datasets into imbalanced dataset
34 new_df = pos_data . append (pd. DataFrame (data = neg_data))
35

36 ##### Separate data for classification #####
37 X = new_df .drop('Class ', axis =1)
38 y = new_df [['Class ']]
39 # Create train and test set (70:30 train:test)
40 X_train , X_test , y_train , y_test = train_test_split (X, y,
41 test_size =0.30 , random_state =42)
42 # SMOTE datasets
43 smote = SMOTE(random_state = 20)
44 X_train_smote , y_train_smote = smote. fit_resample (X_train , y_train)
45

46 ##### Classification #####
47

48 # Gradient Boost - No Resampling
49 gb = GradientBoostingClassifier (random_state = 20)
50 gb_pred = gb.fit(X_train , y_train). predict (X_test)
51 print(classification_report (y_test , gb_pred))
52 print(balanced_accuracy_score (y_test , gb_pred))
53

54 # Gradient Boost - SMOTE Resampling
55 gb = GradientBoostingClassifier (random_state = 20)
56 gb_pred_smote = gb.fit(X_train_smote , y_train_smote). predict (X_test)
57 print(classification_report (y_test , gb_pred_smote))
58 print(balanced_accuracy_score (y_test , gb_pred_smote))
59

60 # Random Forest - No Resampling
61 rf = RandomForestClassifier (random_state = 20)
62 rf_pred = rf.fit(X_train , y_train). predict (X_test)
63 print(classification_report (y_test , rf_pred))
64 print(balanced_accuracy_score (y_test , rf_pred))
65

66 # Random Forest - SMOTE Resampling
67 rf = RandomForestClassifier (random_state = 20)
68 rf_pred_smote = rf.fit(X_train_smote , y_train_smote). predict (X_test)
69 print(classification_report (y_test , rf_pred_smote))
70 print(balanced_accuracy_score (y_test , rf_pred_smote))

Kaggle Credit Card Fraud 99

71

72 # Gaussian NB - No Resampling
73 gnb = GaussianNB ()
74 gnb_pred = gnb.fit(X_train , y_train). predict (X_test)
75 print(classification_report (y_test , gnb_pred))
76 print(balanced_accuracy_score (y_test , gnb_pred))
77

78 # Gaussian NB - SMOTE Resampling
79 gnb = GaussianNB ()
80 gnb_pred_smote = gnb.fit(X_train_smote , y_train_smote). predict (X_test)
81 print(classification_report (y_test , gnb_pred_smote))
82 print(balanced_accuracy_score (y_test , gnb_pred_smote))

To visualize the results from the above experiments, we place our results in a csv file and
import it into R for analysis. After cleaning the data, we can simply plot the balanced
accuracy against each imbalance level we analyzed (ρ = 0.05, ρ = 0.1, ρ = 0.2). We
display classifiers by both size and color because of overlapping points. After faceting for
resampling and making minor aesthetic edits to the plot, we generate Figure 4.4.

1 # Load packages
2 library (tidyverse)
3 library (latex2exp)
4

5 # Load data and clean
6 data <- read_csv('kaggle _ resampling _imb.csv ') %>%
7 rename (Classifier = classifier) %>%
8 mutate (imbalance _lvl = as. factor (imbalance _lvl))
9

10 # Create plot
11 ggplot (data = data , aes(
12 x = imbalance _lvl , y = balanced _accuracy ,
13 color = Classifier , size = Classifier
14)) +
15 geom_point () +
16 facet_wrap(~ resampling) +
17 labs(
18 title = " Balanced Accuracy Classifier Performance ",
19 subtitle = " Kaggle Credit Cards Dataset ",
20 x = TeX(" Imbalance Level ($\\ rho$)"),
21 y = " Balanced Accuracy "#,
22 #color = " Classifier "
23) +
24 theme_ classic () +
25 theme(
26 plot.title = element _text(hjust = 0.5) ,
27 plot. subtitle = element _text(hjust = 0.5)
28) +
29 scale_color_ manual (
30 labels = c(" Gradient Boosting ", " Gaussian Naive Bayes", " Random

Forest "),
31 values = c("# BDCD25 ", "# de772d ", "# e815dd ")
32) +
33 scale_size_ manual (

Kaggle Credit Card Fraud 100

34 labels = c(" Gradient Boosting ", " Gaussian Naive Bayes", " Random
Forest "),

35 values = c(5, 3, 1)
36)
37

38 # Save plot
39 ggsave ('discrete _clf_ kaggle .png ')

C.3 Performance over All Imbalance Levels
In both of the single-attempt classification (Section C.3.1) and simulation study (Sec-
tion C.3.2), we must remove negative instances from the Kaggle Credit Card Fraud dataset
to achieve our desired level of ρ.

Recall that from Section C.2, this process involves several steps. We first define our desired
value of ρ. Because ρ is defined as ρ = mp

mn
, so we can first check the number of positive

instances in the dataset and then determine the amount of negative instances we want to
keep in the dataset because, rearranging the equation for ρ, we have that m′n = mp

ρ
. Then,

we remove mn−m′n from the negative observations in the dataset to achieve the specified
ρ.

C.3.1 Single-Attempt Classification
In single-attempt classification, like in Section A.2.1, we create a function to use classifiers
to classify the Kaggle Credit Card Fraud dataset at each imbalance level from 0.1-1.

1 # Import packages
2 import random
3 import numpy as np
4 import pandas as pd
5 import matplotlib . pyplot as plt
6 import seaborn as sns
7 from matplotlib . ticker import StrMethodFormatter
8

9 from sklearn . metrics import balanced_accuracy_score
10 from sklearn . model_selection import train_test_split
11 from sklearn . ensemble import GradientBoostingClassifier ,

RandomForestClassifier
12 from sklearn . naive_bayes import GaussianNB
13

14 # Load data
15 df = pd. read_csv ('~/ Desktop / thesis . nosync /large -files. nosync / credit_card

/ creditcard .csv ')
16

17 # Create vector of imbalance levels of interest
18 imb_lvls = np. linspace (0 ,1 ,101)
19 imb_lvls = imb_lvls [1:]
20

21 def imb_sim (df):
22

23 """ Goal: Get balanced accuracy for all imbalance levels from 0.1 -1

Kaggle Credit Card Fraud 101

24 for RF , NB , GB
25

26 Input: Dataset to classify
27 """
28

29 # Initialize array for results of classification
30 rf_res = []
31 nb_res = []
32 gb_res = []
33

34 for i in range (0, len(imb_lvls) -1):
35

36 # Generate imbalanced dataset with parameters
37 RHO = imb_lvls [i] # Set rho to some value
38 m_n_init = len(df[df['Class '] == 0]. index) # Initial num. neg.
39 m_p = len(df[df['Class '] == 1]. index) # Num. pos
40 m_n_want = round(m_p / RHO) # Num. neg. to achieve rho
41 to_remove = int(round(m_n_init - m_n_want)) # Neg. to remove
42

43 # Remove observations , create new dataset
44 neg_data = df[df['Class '] == 0]
45 pos_data = df[df['Class '] == 1]
46 neg_data = neg_data .iloc[to_remove :]
47 new_df = pos_data . append (pd. DataFrame (data = neg_data))
48

49 # Create train and test set (70:30 train:test)
50 X = new_df .drop('Class ', axis =1)
51 y = new_df [['Class ']]
52 X_train , X_test , y_train , y_test = train_test_split (X, y,
53 test_size = 0.30 ,

random_state = 42)
54

55 # Classify Random Forest
56 rf = RandomForestClassifier (random_state = 20)
57 rf_pred = rf.fit(X_train , y_train). predict (X_test)
58 rf_res . append (balanced_accuracy_score (y_test , rf_pred))
59

60 # Classify Gaussian Naive Bayes
61 nb = GaussianNB ()
62 nb_pred = nb.fit(X_train , y_train). predict (X_test)
63 nb_res . append (balanced_accuracy_score (y_test , nb_pred))
64

65 # Classify Gradient Boost
66 gb = GradientBoostingClassifier (random_state = 20)
67 gb_pred = gb.fit(X_train , y_train). predict (X_test)
68 gb_res . append (balanced_accuracy_score (y_test , gb_pred))
69

70 results = {" imb_lvl ": imb_lvls [1:] , "gb": gb_res , "nb": nb_res , "rf"
: rf_res }

71 results = pd. DataFrame (results)
72

73 return (results)
74

75 # Run simulation on data

Kaggle Credit Card Fraud 102

76 res = imb_sim (df)
77

78 # Reformat data
79 data = pd.melt(res , id_vars = 'imb_lvl ', value_vars = ['gb ', 'nb ', 'rf '

],
80 value_name = 'bal_acc ', var_name = ['classifier '])
81

82 # Plot
83 sns. set_style ('whitegrid ')
84 sns. set_palette (['# ED3550 ', 'tab:cyan ', '# B17FE3 '])
85 plt. figure (figsize = (8, 5))
86 sns. lineplot (data = data , x = 'imb_lvl ', y = 'bal_acc ',
87 hue = 'classifier ', legend = None);
88 plt. xlabel ('Imbalance Level ', size = 20)
89 plt. ylabel ('Balanced Accuracy ', size = 20)
90 plt. xticks (fontsize = 20)
91 plt. yticks (fontsize = 20)
92 plt.title('Kaggle Credit Cards Performance ', size = 20);
93 plt. legend (title = 'Classifier ', fontsize = 'large ', title_fontsize = '

14 ',
94 labels = ['Gradient Boosting ', 'Gaussian Naive Bayes ',
95 'Random Forest ']);
96 plt. savefig ('imb_sim_kaggle ')

C.3.2 Simulation Study
Similar to Section A.2.2, we create a function to use classifiers to classify the Kaggle Credit
Card Fraud dataset N times at each imbalance level from 0.1-1. In our experiments, we
choose to use N = 100, but this parameter can be changed. Increasing N will improve
the robustness of the results, though it would also increase computational complexity, so
this may be a good area to investigate in the future.

1 # Import packages
2 import pandas as pd
3 import numpy as np
4 import random
5 import matplotlib . pyplot as plt
6 import seaborn as sns
7

8 from sklearn . ensemble import GradientBoostingClassifier ,
RandomForestClassifier

9 from sklearn . metrics import balanced_accuracy_score
10 from sklearn . model_selection import train_test_split
11 from sklearn . naive_bayes import GaussianNB
12

13 # Load dataset
14 df = pd. read_csv ('~/ Desktop / thesis . nosync /large -files. nosync / credit_card

/ creditcard .csv ')
15

16 # Create vector of imbalance levels of interest
17 imb_lvls = np. linspace (0 ,1 ,101) # Vector of imbalance levels 0.01 - 1
18 imb_lvls = imb_lvls [1:]
19

Kaggle Credit Card Fraud 103

20 def imb_sim (df):
21

22 """ Goal: Get balanced accuracy for all imbalance levels from 0.1 -1
23 for RF , NB , GB over N classification attempts at each imbalance

level
24

25 Input: Dataset to classify
26 """
27

28 # Define number of iterations
29 N = 100
30

31 # Initialize arrays for results
32 rf_res = np.zeros(shape =(len(imb_lvls), N+2))
33 nb_res = np.zeros(shape =(len(imb_lvls), N+2))
34 gb_res = np.zeros(shape =(len(imb_lvls), N+2))
35

36 for i in range (0, len(imb_lvls) -1):
37

38 # Generate N imbalanced datasets with parameters
39 for j in range (0, N):
40

41 # Generate imbalanced dataset with parameters
42 RHO = imb_lvls [i] # Set rho to some value
43 m_n_init = len(df[df['Class '] == 0]. index) # Initial num.

neg.
44 m_p = len(df[df['Class '] == 1]. index) # Num. pos
45 m_n_want = round(m_p / RHO) # Num. neg. to achieve rho
46 to_remove = int(round(m_n_init - m_n_want)) # Neg. to remove
47

48 neg_data = df[df['Class '] == 0]
49 pos_data = df[df['Class '] == 1]
50 neg_data = neg_data .iloc[to_remove :]
51 new_df = pos_data . append (pd. DataFrame (data = neg_data))
52

53 X = new_df .drop('Class ', axis = 1)
54 y = new_df [['Class ']]
55

56 # Create train and test split (70:30 train:test)
57 X_train , X_test , y_train , y_test = train_test_split (X, y,
58 test_size = 0.30 ,
59 random_state = 42)
60

61 # Classify Random Forest
62 rf = RandomForestClassifier ()
63 rf_pred = rf.fit(X_train , y_train). predict (X_test)
64 rf_res [i][j] = balanced_accuracy_score (y_test , rf_pred)
65 rf_res [i][100] = imb_lvls [i]
66 rf_res [i][101] = 1 # Indicates RF
67

68 # Classify Gaussian Naive Bayes
69 nb = GaussianNB ()
70 nb_pred = nb.fit(X_train , y_train). predict (X_test)
71 nb_res [i][j] = balanced_accuracy_score (y_test , nb_pred)

Kaggle Credit Card Fraud 104

72 nb_res [i][100] = imb_lvls [i]
73 nb_res [i][101] = 2 # Indicates NB
74

75 # Classify Gradient Boost
76 gb = GradientBoostingClassifier (random_state = 20)
77 gb_pred = gb.fit(X_train , y_train). predict (X_test)
78 gb_res [i][j] = balanced_accuracy_score (y_test , gb_pred)
79 gb_res [i][100] = imb_lvls [i]
80 gb_res [i][101] = 3 # Indicates GB
81

82 # Make each result a dataframe
83 rf_res = pd. DataFrame (rf_res)
84 nb_res = pd. DataFrame (nb_res)
85 gb_res = pd. DataFrame (gb_res)
86

87 # Create full dataset and return
88 full_res = rf_res . append ([nb_res , gb_res])
89 return (full_res)
90

91 # Run simulation and reformat data
92 data = imb_sim (df = df)
93 data. rename (columns ={ data. columns [100]: " imb_lvl " }, inplace = True)
94 data. rename (columns ={ data. columns [101]: " classifier " }, inplace = True)
95 data['classifier '] = data['classifier ']. replace ([1.0] , 'RF ')
96 data['classifier '] = data['classifier ']. replace ([2.0] , 'NB ')
97 data['classifier '] = data['classifier ']. replace ([3.0] , 'GB ')
98 data = pd.melt(data , id_vars = ['imb_lvl ', 'classifier '], v
99 value_vars = [i for i in range (0 ,100)],

100 value_name = 'bal_acc ', var_name = ['sim_run '])
101

102 # Plot
103 sns. set_style ('whitegrid ')
104 sns. set_palette (['tab:pink ', 'tab:cyan ', 'tab:olive '])
105 plt. figure (figsize = (8, 5))
106 sns. lineplot (data = data , x = 'imb_lvl ', y = 'bal_acc ',
107 hue = 'classifier ', legend = None));
108 plt. xlabel ('Imbalance Level ', size = 20)
109 plt. ylabel ('Balanced Accuracy ', size = 20)
110 plt. xticks (fontsize = 20)
111 plt. yticks (fontsize = 20)
112 plt.title('Kaggle Credit Cards Performance Simulation ', size = 20);
113 plt. legend (title = 'Classifier ', fontsize = 'large ',
114 title_fontsize ='14 ',
115 labels = ['Gradient Boosting ', 'Gaussian Naive Bayes ',
116 'Random Forest ']);
117 plt.ylim ([0.95 , 1.003])
118 plt. savefig ('kaggle_sim ')

Kaggle Credit Card Fraud 105

Appendix D
New Techniques

The code below relates to Chapter 5, where we discuss state-of-the-art loss functions (Focal
Loss, Gradient Harmonizing Mechanism Loss, and Label-Distribution-Aware Margin Loss)
and test them on the Kaggle Credit Cards dataset. First, we show the code for each loss
function in Section D.1, and we then give an example of a loss function experiment in
Section D.2.

D.1 State of the Art Loss Functions
Each section below shows the code for a state-of-the-art loss function. Section D.1.1
displays Focal Loss, Section D.1.2 displays Gradient Harmonizing Mechanism (GHM)
Loss, and Section D.1.3 displays Label-Distribution-Aware Margin (LDAM) Loss. Note
that each of these functions were implemented with Pytorch, which we discuss in detail in
Chapter 5.

To define these new loss functions, we need to define a new class for each. We can then call
each loss function by classing its newly-defined class. Each class has an __init__() and a
forward() function to initialize the function parameters and calculate loss, respectively.

D.1.1 Focal Loss
The FocalLoss class defines gamma and alpha in its __init__() function. Recall that
γ adjusts the rate at which easily classified instances are downweighted and α acts as a
weight to increase the importance of the minority class.

In the forward() function, we use the Functional module from Pytorch to calculate loss,
which allows us to take logs and perform basic operations.

The code below for the Focal Loss function is also available on Github at https://github.
com/clcarwin/focal_loss_pytorch (Lin et al., 2017).

1 # Import packages
2 import torch
3 import torch.nn as nn
4 import torch.nn. functional as F
5 from torch. autograd import Variable
6

7 # Define focal loss class
8 class FocalLoss (nn. Module):

106

https://github.com/clcarwin/focal_loss_pytorch
https://github.com/clcarwin/focal_loss_pytorch

9 """ Focal Loss Function
10 See "Focal Loss for Dense Object Detection "
11 https :// arxiv.org/pdf /1708.02002
12

13 Inputs :
14 gamma (float): tuneable focusing parameter
15 alpha (float): class imbalance weight factor
16 size_average (bool): return average or sum for loss
17 """
18 def __init__ (self ,
19 gamma = 0,
20 alpha = None ,
21 size_average = True):
22 super(FocalLoss , self). __init__ ()
23 self.gamma = gamma
24 self.alpha = alpha
25 if isinstance (alpha ,(float ,int ,long)): self.alpha = torch. Tensor

([alpha ,1- alpha])
26 if isinstance (alpha ,list): self.alpha = torch. Tensor (alpha)
27 self. size_average = size_average
28

29 # Calculate loss
30 def forward (self , input , target):
31 if input.dim () >2:
32 input = input.view(input.size (0) ,input.size (1) ,-1)
33 input = input. transpose (1 ,2)
34 input = input. contiguous ().view (-1, input.size (2))
35 target = target .view (-1,1)
36

37 logpt = F. log_softmax (input)
38 logpt = logpt. gather (1, target)
39 logpt = logpt.view (-1)
40 pt = Variable (logpt.data.exp ())
41

42 if self.alpha is not None:
43 if self.alpha.type ()!= input.data.type ():
44 self.alpha = self.alpha. type_as (input.data)
45 at = self.alpha. gather (0, target .data.view (-1))
46 logpt = logpt * Variable (at)
47

48 loss = -1 * (1-pt)** self.gamma * logpt
49 if self. size_average : return loss.mean ()
50 else: return loss.sum ()

D.1.2 Gradient Harmonizing Mechanism (GHM) Loss
The GHM loss class, defined as GHMC(), implements the GHM loss function. We provide
the GHM loss function below, but it is also available on Github at https://github.com/
libuyu/GHM_Detection (B. Li, Y. Liu and X. Wang, 2019).

1 # Import packages
2 import torch
3 import torch.nn as nn

New Techniques 107

https://github.com/libuyu/GHM_Detection
https://github.com/libuyu/GHM_Detection

4 import torch.nn. functional as F
5

6 # Resize class labels
7 def _expand_binary_labels (labels , label_weights , label_channels):
8 bin_labels = labels . new_full ((labels .size (0) , label_channels), 0)
9 inds = torch. nonzero (labels >= 1). squeeze ()

10 if inds.numel () > 0:
11 bin_labels [inds , labels [inds] - 1] = 1
12 bin_label_weights = label_weights .view (-1, 1). expand (
13 label_weights .size (0) , label_channels)
14 return bin_labels , bin_label_weights
15

16 # Gradient Harmonizing Loss class
17 class GHMC(nn. Module):
18 """ GHM Loss Function
19 See " Gradient Harmonized Single -stage Detector
20 https :// arxiv.org/abs /1811.05181
21

22 Inputs :
23 bins (int): Number of the unit regions for distribution

calculation .
24 momentum (float): The parameter for moving average .
25 use_sigmoid (bool): Can only be true for BCE based loss now.
26 loss_weight (float): The weight of the total GHM -C loss.
27 """
28 def __init__ (
29 self ,
30 bins =10,
31 momentum =0,
32 use_sigmoid =True ,
33 loss_weight =1.0):
34 super(GHMC , self). __init__ ()
35 self.bins = bins
36 self. momentum = momentum
37 self.edges = torch. arange (bins + 1).float ().cuda () / bins
38 self.edges [-1] += 1e-6
39 if momentum > 0:
40 self. acc_sum = torch.zeros(bins).cuda ()
41 self. use_sigmoid = use_sigmoid
42 if not self. use_sigmoid :
43 raise NotImplementedError
44 self. loss_weight = loss_weight
45

46 def forward (self , pred , target , label_weight , *args , ** kwargs):
47 """ Calculate the GHM -C loss.
48 Args:
49 pred (float tensor of size [batch_num , class_num]):
50 The direct prediction of classification fc layer.
51 target (float tensor of size [batch_num , class_num]):
52 Binary class target for each sample .
53 label_weight (float tensor of size [batch_num , class_num]):
54 the value is 1 if the sample is valid and 0 if ignored .
55 Returns :
56 The gradient harmonized loss.

New Techniques 108

57 """
58 # Make target binary class label
59 if pred.dim () != target .dim ():
60 target , label_weight = _expand_binary_labels (
61 target , label_weight , pred.size (-1))
62 target , label_weight = target .float (), label_weight .float ()
63 edges = self.edges
64 mmt = self. momentum
65 weights = torch. zeros_like (pred)
66

67 # Gradient length
68 g = torch.abs(pred. sigmoid (). detach () - target)
69

70 valid = label_weight > 0
71 tot = max(valid.float ().sum ().item (), 1.0)
72 n = 0 # n valid bins
73 for i in range(self.bins):
74 inds = (g >= edges[i]) & (g < edges[i+1]) & valid
75 num_in_bin = inds.sum ().item ()
76 if num_in_bin > 0:
77 if mmt > 0:
78 self. acc_sum [i] = mmt * self. acc_sum [i] \
79 + (1 - mmt) * num_in_bin
80 weights [inds] = tot / self. acc_sum [i]
81 else:
82 weights [inds] = tot / num_in_bin
83 n += 1
84 if n > 0:
85 weights = weights / n
86

87 loss = F. binary_cross_entropy_with_logits (
88 pred , target , weights , reduction ='sum ') / tot
89 return loss * self. loss_weight

D.1.3 Label-Distribution-Aware Margin (LDAM) Loss
The LDAM loss function, defined as the LDAMLoss() class, is shown below and can also be
found on Github at https://github.com/kaidic/LDAM-DRW (Cao et al., 2019). LDAM
returns a cross-entropy-based loss function, shown in lines 50-52 in the forward() function.

1 # Import packages
2 import math
3 import torch
4 import torch.nn as nn
5 import torch.nn. functional as F
6 import numpy as np
7

8 # LDAM Loss class
9 class LDAMLoss (nn. Module):

10 """ LDAM Loss
11 See " Learning Imbalanced Datasets with Label - Distribution -Aware
12 Margin Loss"
13 https :// arxiv.org/abs /1906.07413

New Techniques 109

https://github.com/kaidic/LDAM-DRW

14

15 Inputs :
16 cls_num_list (list): list of classes
17 max_m (float): maximum value of n in denominator of delta
18 weight (float): weight parameter for imbalance
19 s (int): tuneable constant
20 """
21 def __init__ (self ,
22 cls_num_list ,
23 max_m = 0.5,
24 weight = None ,
25 s = 30):
26 super(LDAMLoss , self). __init__ ()
27 m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
28 m_list = m_list * (max_m / np.max(m_list))
29 m_list = torch.cuda. FloatTensor (m_list)
30 self. m_list = m_list
31 assert s > 0
32 self.s = s
33 self. weight = weight
34

35 def forward (self , x, target):
36 """
37 Calculate loss using LDAM
38 """
39

40 index = torch. zeros_like (x, dtype = torch.uint8)
41 index. scatter_ (1, target .data.view (-1, 1), 1)
42

43 index_float = index.type(torch.cuda. FloatTensor)
44 batch_m = torch. matmul (self. m_list [None , :],
45 index_float . transpose (0, 1))
46 batch_m = batch_m .view ((-1, 1))
47 x_m = x - batch_m
48

49 output = torch.where(index , x_m , x)
50 return F. cross_entropy (self.s * output ,
51 target ,
52 weight = self. weight)

D.2 Loss Function Experiments
Below, we show a sample loss function experiment using a neural network to classify
transactions in the Kaggle Credit Cards dataset. After loading all the required modules,
we prepare the dataset by creating a 70:30 train-test split.

To use each loss function in the neural network, we must define them in a class. Note that
each definition is taken from the respective code chunks given in Section D.1. Focal loss
is defined in lines 48-90, GHM is defined in lines 93-146, and LDAM is defined in lines
148-180.

Then, we can define our neural network. When we define our hyperparameters, which

New Techniques 110

are discussed in Chapter 5, we also define our loss function. Here, we just use BCE from
Pytorch as an example, and we can call it as nn.BCEWithLogitsLoss(). To change the
loss function used to run the neural network, we simply change the LOSS_FUN parameter
in line 189 to the desired loss function. Each loss function class defined above is called
with the class name followed by a set of parentheses. For example, to use Focal Loss, we
set line 189 to the following: LOSS_FUN = FocalLoss(). This loss function is redefined as
our criterion in line 259, and when we train our model, this criterion is used to compare
the predicted label to the true label.

We then test the model, as shown in lines 297-305 and create a list of predicted labels. To
evaluate the model, we use balanced accuracy as before.

1 # Import packages
2 import numpy as np
3 import pandas as pd
4 import os
5 import cv2
6 import tensorflow as tf
7 from tqdm import tqdm
8 import random
9 import sys

10 import pathlib
11 import shutil
12 import argparse
13

14 import torch
15 import torch.nn as nn
16 import torchvision
17 import torch.nn. functional as F
18 from torch. autograd import Variable
19 import torchvision . transforms as transforms
20 from torch.utils.data. sampler import SubsetRandomSampler
21 from torchvision import datasets
22 import torch.optim as optim
23 from torch.utils.data import Dataset , DataLoader
24 from torchvision import models
25

26 import sklearn
27 from sklearn . model_selection import train_test_split
28 from sklearn import preprocessing
29 from sklearn . preprocessing import StandardScaler , LabelEncoder
30 from sklearn import metrics
31 from sklearn . metrics import balanced_accuracy_score ,

classification_report
32 from sklearn . metrics import confusion_matrix
33 from sklearn .utils import shuffle
34

35 # Load data
36 df = pd. read_csv ('~/ Desktop / thesis . nosync /large -files. nosync / credit_card

/ creditcard .csv ')
37

38 # Create train and test set (70:30 train:test)
39 X = df.drop('Class ', axis =1)

New Techniques 111

40 y = df[['Class ']]
41 X_train , X_test , y_train , y_test = train_test_split (X,
42 y,
43 test_size = 0.30 ,
44 random_state = 42)
45

46 ##### Define Loss Functions #####
47

48 class FocalLoss (nn. Module):
49 """
50 Focal Loss
51 """
52 def __init__ (self , gamma = 0, alpha = None , size_average = True):
53 super(FocalLoss , self). __init__ ()
54 self.gamma = gamma
55 self.alpha = alpha
56 if isinstance (alpha ,(float ,int)): self.alpha = torch. Tensor ([

alpha ,
57 1 - alpha])
58 if isinstance (alpha ,list): self.alpha = torch. Tensor (alpha)
59 self. size_average = size_average
60

61 def forward (self , input , target):
62 if input.dim () >2:
63 input = input.view(input.size (0) , input.size (1) , -1)
64 input = input. transpose (1, 2)]
65 input = input. contiguous ().view (-1, input.size (2))]
66 target = target .view (-1, 1)
67

68 logpt = F. log_softmax (input)
69 logpt = logpt.view (-1)
70 pt = Variable (logpt.data.exp ())
71

72 if self.alpha is not None:
73 if self.alpha.type () != input.data.type ():
74 self.alpha = self.alpha. type_as (input.data)
75 at = self.alpha. gather (0, target .data.view (-1))
76 logpt = logpt * Variable (at)
77

78 loss = -1 * (1 - pt)** self.gamma * logpt
79 if self. size_average : return loss.mean ()
80 else: return loss.sum ()
81

82

83 def _expand_binary_labels (labels , label_weights , label_channels):
84 bin_labels = labels . new_full ((labels .size (0) , label_channels), 0)
85 inds = torch. nonzero (labels >= 1). squeeze ()
86 if inds.numel () > 0:
87 bin_labels [inds , labels [inds] - 1] = 1
88 bin_label_weights = label_weights .view (-1, 1). expand (
89 label_weights .size (0) , label_channels)
90 return bin_labels , bin_label_weights
91

92

New Techniques 112

93 class GHMC(nn. Module):
94 """
95 GHM Classification Loss
96 """
97 def __init__ (
98 self ,
99 bins =10,

100 momentum =0,
101 use_sigmoid =True ,
102 loss_weight =1.0):
103 super(GHMC , self). __init__ ()
104 self.bins = bins
105 self. momentum = momentum
106 self.edges = torch. arange (bins + 1).float () / bins
107 self.edges [-1] += 1e-6
108 if momentum > 0:
109 self. acc_sum = torch.zeros(bins).cuda ()
110 self. use_sigmoid = use_sigmoid
111 if not self. use_sigmoid :
112 raise NotImplementedError
113 self. loss_weight = loss_weight
114

115 def forward (self , pred , target , label_weight = 1, *args , ** kwargs):
116

117 if pred.dim () != target .dim ():
118 target , label_weight = _expand_binary_labels (
119 target , label_weight , pred.size (-1))
120 target , label_weight = target .float (), label_weight .float ()
121 edges = self.edges
122 mmt = self. momentum
123 weights = torch. zeros_like (pred)
124

125 g = torch.abs(pred. sigmoid (). detach () - target)
126

127 valid = label_weight > 0
128 tot = max(valid.float ().sum ().item (), 1.0)
129 n = 0 # n valid bins
130 for i in range(self.bins):
131 inds = (g >= edges[i]) & (g < edges[i+1]) & valid
132 num_in_bin = inds.sum ().item ()
133 if num_in_bin > 0:
134 if mmt > 0:
135 self. acc_sum [i] = mmt * self. acc_sum [i] \
136 + (1 - mmt) * num_in_bin
137 weights [inds] = tot / self. acc_sum [i]
138 else:
139 weights [inds] = tot / num_in_bin
140 n += 1
141 if n > 0:
142 weights = weights / n
143

144 loss = F. binary_cross_entropy_with_logits (
145 pred , target , weights , reduction ='sum ') / tot
146 return loss * self. loss_weight

New Techniques 113

147

148 class LDAMLoss (nn. Module):
149 """
150 LDAM Loss
151 """
152 def __init__ (self ,
153 cls_num_list ,
154 max_m = 0.5,
155 weight = None ,
156 s = 30):
157 super(LDAMLoss , self). __init__ ()
158 m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
159 m_list = m_list * (max_m / np.max(m_list))
160 m_list = torch.cuda. FloatTensor (m_list)
161 self. m_list = m_list
162 assert s > 0
163 self.s = s
164 self. weight = weight
165

166 def forward (self , x, target):
167

168 index = torch. zeros_like (x, dtype = torch.uint8)
169 index. scatter_ (1, target .data.view (-1, 1), 1)
170

171 index_float = index.type(torch.cuda. FloatTensor)
172 batch_m = torch. matmul (self. m_list [None , :],
173 index_float . transpose (0, 1))
174 batch_m = batch_m .view ((-1, 1))
175 x_m = x - batch_m
176

177 output = torch.where(index , x_m , x)
178 return F. cross_entropy (self.s * output ,
179 target ,
180 weight = self. weight)
181

182 ##### Neural Network #####
183

184 # Hyperparameters
185 BATCH_SIZE = 16
186 HIDDEN_NODES = 50
187 EPOCHS = 100
188 LEARNING_RATE = 0.0001
189 LOSS_FUN = nn. BCEWithLogitsLoss ()
190

191 # Standardize data
192 scaler = StandardScaler ()
193 X_train = scaler . fit_transform (X_train)
194 X_test = scaler . fit_transform (X_test)
195

196 # Training data loader
197 class trainData (Dataset):
198

199 def __init__ (self , X_data , y_data):
200 self. X_data = X_data

New Techniques 114

201 self. y_data = y_data
202

203 def __getitem__ (self , index):
204 return self. X_data [index], self. y_data [index]
205

206 def __len__ (self):
207 return len(self. X_data)
208

209 train_data = trainData (torch. FloatTensor (X_train),
210 torch. FloatTensor (y_train . values))
211

212 # Testing data loader
213 class testData (Dataset):
214

215 def __init__ (self , X_data):
216 self. X_data = X_data
217

218 def __getitem__ (self , index):
219 return self. X_data [index]
220

221 def __len__ (self):
222 return len(self. X_data)
223

224

225 test_data = testData (torch. FloatTensor (X_test))
226 train_loader = DataLoader (dataset = train_data ,
227 batch_size = BATCH_SIZE ,
228 shuffle = True)
229 test_loader = DataLoader (dataset = test_data , batch_size = 1)
230

231 # Define neural networks
232 class binaryClassification (nn. Module):
233 def __init__ (self):
234 super(binaryClassification , self). __init__ ()
235 # Number of input features is 30
236 self. layer_1 = nn. Linear (30, HIDDEN_NODES)
237 self. layer_2 = nn. Linear (HIDDEN_NODES , HIDDEN_NODES)
238 self. layer_out = nn. Linear (HIDDEN_NODES , 1)
239

240 self.relu = nn.ReLU ()
241 self. dropout = nn. Dropout (p = 0.3)
242 self. batchnorm1 = nn. BatchNorm1d (HIDDEN_NODES)
243 self. batchnorm2 = nn. BatchNorm1d (HIDDEN_NODES)
244

245 def forward (self , inputs):
246 x = self.relu(self. layer_1 (inputs))
247 x = self. batchnorm1 (x)
248 x = self.relu(self. layer_2 (x))
249 x = self. batchnorm2 (x)
250 x = self. dropout (x)
251 x = self. layer_out (x)
252

253 return x
254

New Techniques 115

255 # Define model , loss , learning rate
256 device = torch. device ("cuda :0" if torch.cuda. is_available () else "cpu")
257 model = binaryClassification ()
258 model.to(device)
259 criterion = LOSS_FUN
260 optimizer = optim.Adam(model. parameters (), lr = LEARNING_RATE)
261

262 # Train model
263 def binary_acc (y_pred , y_test):
264 y_pred_tag = torch.round(torch. sigmoid (y_pred))
265 correct_results_sum = (y_pred_tag == y_test).sum ().float ()
266 acc = correct_results_sum / y_test .shape [0]
267 acc = torch.round(acc * 100)
268 return acc
269

270 model.train ()
271 loss_vals = []
272 for e in range (1, EPOCHS +1):
273 epoch_loss = 0
274 epoch_acc = 0
275

276 for X_batch , y_batch in train_loader :
277 X_batch , y_batch = X_batch .to(device), y_batch .to(device)
278

279 optimizer . zero_grad ()
280 y_pred = model(X_batch)
281

282 loss = criterion (y_pred , y_batch)
283 acc = binary_acc (y_pred , y_batch)
284

285 loss. backward ()
286 optimizer .step ()
287

288 epoch_loss += loss.item ()
289 epoch_acc += acc.item ()
290

291 loss_vals . append (epoch_loss /len(train_loader))
292 print(f'Epoch {e +0:03}: \
293 | Loss: { epoch_loss / len(train_loader):.5f} \
294 | Acc: { epoch_acc / len(train_loader):.3f}')
295

296 # Test model
297 y_pred_list = []
298 model.eval ()
299 with torch. no_grad ():
300 for X_batch in test_loader :
301 X_batch = X_batch .to(device)
302 y_test_pred = model(X_batch)
303 y_test_pred = torch. sigmoid (y_test_pred)
304 y_pred_tag = torch.round(y_test_pred)
305 y_pred_list . append (y_pred_tag .cpu ().numpy ())
306

307 y_pred_list = [a. squeeze (). tolist () for a in y_pred_list]
308

New Techniques 116

309 # Determine results
310 print(classification_report (y_test , y_pred_list))
311 print(balanced_accuracy_score (y_test , y_pred_list))

New Techniques 117

New Techniques 118

New Techniques 119

List of Acronyms

ANN Artificial Neural Network.

AUC Area Under the Curve.

BCE Binary Cross-Entropy.

BGR Blue Green Red.

CE Cross-Entropy.

CNN Convolutional Neural Network.

FN False Negative.

FNE False Negative Error.

FNR False Negative Rate.

FP False Positive.

FPE False Positive Error.

FPR False Positive Rate.

GHM Gradient Harmonizing Mechanism.

LDAM Label-Distribution-Aware Margin.

MAE Mean Absolute Error.

MFE Mean False Error.

MSE Mean Squared Error.

MSFE Mean Squared False Error.

PCA Principal Component Analysis.

ReLU Rectified Linear Unit.

RGB Red Green Blue.

ROC Receiver Operating Characteristic.

ROS Random Oversampling.

1

RUS Random Undersampling.

SMOTE Synthetic Minority Oversampling Technique.

SMOTEENN Synthetic Minority Oversampling Technique Edited Nearest Neigh-
bors.

SMOTETomek Synthetic Minority Oversampling Technique Tomek-Based Re-
sampling.

TN True Negative.

TNR True Negative Rate.

TP True Positive.

TPR True Positive Rate.

2

Symbols

i indexing variable
j indexing variable
k indexing variable
x input
x input vector
w weights
w weight vector
y output of a neural network
y output vector
ŷ prediction output
h height
d depth
I image
K kernel
c threshold
b bias
s hidden node size
µ mean
v observed value of a class
σ standard deviation
g(·) logistic function
f(·) layer of a given perceptron
C(·) cost function
γ learning rate
R regularization term
λ regularization parameter
N number of batches
L1 L1 regularization
L2 L2 regularization
m number of observations
n number of variables
B number of trees in a random forest
T random forest trees

1

	thesis body final
	Introduction
	Classification Techniques
	Classifiers
	Gaussian Naive Bayes
	Random Forests
	Algorithm

	Gradient Boosting
	Boosting
	Gradient Descent

	Neural Networks
	Passing Data
	Forward Pass
	Backpropagation
	Hyperparameters

	Regularization
	L2 Regularization
	L1 Regularization

	Convolutional Neural Networks
	Structure
	Implementation

	Class Imbalance
	Introduction
	Types of Imbalance: Binary and Multi-Class
	Techniques for Mitigating Class Imbalance
	Data Level Methods
	Algorithm Level Methods

	Metrics
	Sample Classifier Results

	Generating Imbalanced Data
	Theoretical Background
	Code Background
	Function
	Baseline Simulation Tests
	Easy Classification Problem
	Difficult Classification Problem

	Investigating the Effects of Imbalance Levels
	Classifiers
	Neural Networks
	Difficulty over All Imbalance Levels
	Simulation Study
	Conclusions

	Imbalanced Data Classification
	Image Classification Background
	Intel Images Dataset

	Image Data Experiments
	Experiment Structure
	Preprocessing
	Neural Network Structure

	Results
	Easy Classification Problem
	Hard Classification Problem
	Changing Imbalance Levels

	Conclusions

	Numerical Data Experiments
	Experiment Structure
	Results
	Comparison to Generated Data Results

	Conclusions

	Loss Function Development
	Loss Functions
	Focal Loss
	Label-Distribution-Aware Margin (LDAM) Loss
	Gradient Harmonizing Mechanism (GHM) Loss
	Mean False Error (MFE)

	Methods
	Dataset
	Neural Network
	Dense Layer
	Batch Normalization Layer
	Dropout
	Structure

	Implementation
	Loss Functions

	Results
	Conclusions

	Conclusion
	Appendix Synthetic data
	Synthetic Data Classification
	Synthetic Data Test: Classifiers
	Generating Classifier Results Figure

	Synthetic Data Test: Neural Networks
	Generating Neural Network Results Figures

	Varying Imbalance levels
	Single-Attempt Classification
	Mathematical Process
	Function to Test Imbalance

	Simulation Study

	Appendix Intel Images
	Determine Difficulty of Classification Tasks
	Neural Networks

	Appendix Kaggle Credit Card Fraud
	Comparison of Accuracy and Balanced Accuracy
	Classification at Selected Values of
	Performance over All Imbalance Levels
	Single-Attempt Classification
	Simulation Study

	Appendix New Techniques
	State of the Art Loss Functions
	Focal Loss
	Gradient Harmonizing Mechanism (GHM) Loss
	Label-Distribution-Aware Margin (LDAM) Loss

	Loss Function Experiments

	Binder1.pdf
	thesis corrections

	notation.pdf
	Symbols

